434
Views
3
CrossRef citations to date
0
Altmetric
Articles

A novel ecological state at Bear Pond (Adirondack Mountains, NY, USA) following acidification and partial recovery

, , , ORCID Icon, , , & show all

References

  • Adirondack Lakes Survey Corporation (ALSC). 2018. [accessed 2018 Oct 9]. www.adirondacklakessurvey.org.
  • Appleby PG, Oldfield F. 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA. 5(1):1–8.
  • Arseneau KMA, Driscoll CT, Cummings CM, Pope G, Cumming BF. 2016. Adirondack (NY, USA) reference lakes show a pronounced shift in chrysophyte species composition since ca. 1990. J Paleolimnol. 56(4):349–364.
  • Arseneau KMA, Driscoll CT, Brager LM, Ross KA, Cumming BF. 2011. Recent evidence of biological recovery in the Adirondacks (New York, USA): a multiproxy paleolimnological investigation of Big Moose Lake. Can J Fish Aquat Sci. 68(4):575–592.
  • Beier C, Stella JC, Dovčiak M, McNulty SA. 2012. Local climatic drivers of changes in phenology at a boreal-temperate ecotone in eastern North America. Clim Change. 115(2):399–417. doi:10.1007/s10584-012-0455-z.
  • Burge D, Edlund M. 2017. Diatoms of the United States [accessed 2018 Jan 2]. http://westerndiatoms.colorado.edu/taxa/species/lindavia_bodanica.
  • Camburn KE, Kingston JC, Charles DF. 1986. PIRLA diatom iconograph. Report Number 3, PIRLA Unpublished Report Series. Bloomington (IN): Indiana University.
  • Canadian Council of Ministers of the Environment. 2002. [accessed 2019 April 14]. http://ceqg-rcqe.ccme.ca/download/en/246/.
  • Carpenter SR, Kitchell JF, Hodgson R. 1985. Cascading trophic interactions and lake productivity. BioScience. 35(10):634–639.
  • Carpenter SR, Cottingham KL. 1997. Resilience and restoration of lakes. Cons Ecol. 1(1):2. [accessed 2019 Feb 1]. http://www.consecol.org/vol1/iss1/art2/.
  • Charles DF. 1984. Recent pH history Big Moose Lake (Adirondack Mountains, New York, USA) inferred from sediment diatom assemblages. Verh Internat Verein Limnol. 22:559–566.
  • Charles DF. 1990. Effects of acidic deposition on North American lakes: paleolimnological evidence from diatoms and chrysophytes. Phil Trans Roy Soc London. B327:403–412.
  • Charles DF, Whitehead DR. 1986. The PIRLA Project: paleoecological investigations of recent lake acidification. Hydrobiologia. 143(1):13–20.
  • Charles DF, Binford M, Furlong ET, Hites RT, Mitchell M, Norton SA, Oldfield F, Paterson MJ, Smol JP, Uutala AJ, et al. 1990. Paleoecological investigation of recent lake acidification in the Adirondack Mountains, N.Y. J Paleolimnol. 3:195–241.
  • Cumming BF, Smol JP, Kingston JC, Charles DF, Birks HJB, Camburn KE, Dixit SS, Uutala A, Selle AR. 1992. How much acidification has occurred in Adirondack region lakes (New York, USA) since preindustrial times? Can J Fish Aquat Sci. 49(1):128–141.
  • Cumming BF, Davey KA, Smol JP, Birks H. 1994. When did acid-sensitive Adirondack lakes (New York, USA) begin to acidify and are they still acidifying? Can J Fish Aquat Sci. 51(7):1550–1568.
  • Davis RB, Anderson DS, Charles DF, Galloway JN. 1988. Two-hundred-year pH history of Woods, Sagamore, and Panther Lakes in the Adirondack Mountains, New York State. Aquat Tox Haz Assess. 10:89–111.
  • Demong L. 2001. The use of rotenone to restore native brook trout in the Adirondack Mountains of New York: an overview. In Cailteux RL, DeMong L, Finlayson BJ, Horton W, McClay W, Schnick RA, Thompson C, editors, Rotenone in fisheries: are the rewards worth the risk? Trends Fish Sci Mgt 1. Bethesda, MD: American Fish Soc; p. 29–35.
  • Dixit SS, Smol JP. 1995. Diatom evidence of past water quality changes in Adirondack seepage lakes (New York, U.S.A.). Diatom Res. 10(1):113–129.
  • Dixit SS, Dixit AS, Smol JP. 2002. Diatom and chrysophyte transfer functions and inferences of post-industrial acidification and recent recovery trends in Killarney Lakes (Ontario, Canada). J Paleolimnol. 27(1):79–96.
  • US Department of Health and Human Services (DOHHS). 2016. Report on carcinogens, 14th ed. [accessed 2019 Feb 1]. https://ntp.niehs.nih.gov/ntp/roc/content/profiles/toxaphene.pdf.
  • Driscoll CT, Driscoll KM, Fakhraei H, Civerolo K. 2016. Long-term temporal trends and spatial patters in the acid-base chemistry of lakes in the Adirondack region of New York in response to decreased acid deposition. Atmos Envir. 146:5–14.
  • Dykstra WW, Lennon RE. 1966. The role of chemicals for the control of vertebrate pests. In Knipling EF (chair). Pest Control by Chemical, Biological, Genetic, and Physical Means: A Symposium. United States Department of Agriculture, ARS 33-110; p. 29–34.
  • Finstad AG, Helland IP, Ugedal O, Hesthagen T, Hessen DO. 2014. Unimodal response of fish yield to dissolved organic carbon. Ecol Lett. 17(1):36–43.
  • Ginn BK, Cumming BF, Smol JP. 2007. Diatom-based environmental inferences and model comparisons from 494 northeastern North American lakes. J Paleolimnol. 43:647–661.
  • Gunn JM, Mills KH. 1998. The potential for restoration of acid-damaged lake trout lakes. Rest Ecol. 6(4):390–397.
  • Harig AL, Bain MB. 1995. Restoring the indigenous fishes and biological integrity of Adirondack mountain lakes. A research and demonstration project in restoration ecology. Ithaca (NY): New York Cooperative Fish and Wildlife Research Unit, Department of Natural Resources, Cornell University.
  • Heiri O, Lotter AF, Lemcke G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol. 25(1):101–110.
  • Huang J, Zhang Y, Arhonditsis GB, Gao J, Chen Q, Wu N, Dong F, Shi W. 2019. How successful are the restoration efforts of China's lakes and reservoirs? Environ Int. 123:96–103.
  • Hunt EG, Keith JO. 1963. Pesticide-wildlife investigations in California: 1962. Proceedings of the 2nd Annual Conference on Use of Agricultural Chemicals in California; p. 1–29.
  • Jackson ST, Charles DF. 1988. Aquatic macrophytes in Adirondack (New York) lakes: patterns of species composition in relation to environment. Can J Bot. 66(7):1449–1460.
  • Jenkins J, Roy K, Driscoll C, Buerkett C. 2007. Acid rain in the Adirondacks: an environmental history. Ithaca (NY): Cornell University Press.
  • Josephson DC, Robinson JM, Chiotti J, Jirka KJ, Kraft CE. 2014. Chemical and biological recovery from acid deposition within the Honnedaga Lake watershed, New York, USA. Environ Monit Assess. 186(7):4391–4409.
  • Kallman BJ, Cope OB, Navarre RJ. 1962. Distribution and detoxification of toxaphene in Clayton Lake, New Mexico. Trans Am Fish Soc. 91(1):14–22.
  • Krammer K, Lange-Bertalot H. 1991. Süßwasserflora von Mitteleuropa, 3 Teil: Centrales, Fragilariaceae, Eunotiaceae. Stuttgart (Germany): Gustav Fischer Verlag.
  • Likens GE, Wright RF, Galloway JN, Butler TJ. 1979. Acid rain. Sci Am. 241(4):43–51.
  • Lyons RA, Johnson LK, McIntyre BM. 2016. Phosphorus loading rates in lakes with development and stocked fish in the Sierra Nevada Mountains, California, USA. Ecosphere. 7(11):e01554.
  • McIntyre SH, Duthie HC. 1993. Morphological variation in populations of the diatom Asterionella ralfsii W. Smith from Nova Scotia, Canada. Hydrobiologia. 269–270(1):67–73.
  • Mitchell MJ, Driscoll CT, McHale PJ, Roy KM, Dong Z. 2013. Lake/watershed sulfur budgets and their response to decreases in atmospheric sulfur deposition: watershed and climate controls. Hydrol Process. 27(5):710–720.
  • Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Høgåsen T, Wilander A, Skjelkvåle BL, Jeffries DS, Vuorenmaa J, et al. 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature. 450(7169):537–540.
  • Morse NB, Pellissier PA, Cianciola EN, Brereton RL, Sullivan MM, Shonka NK, Wheeler TB, McDowell WH. 2014. Novel ecosystems in the Anthropocene: a revision of the novel ecosystem concept for pragmatic applications. Ecol Soc. 19:12.
  • National Atmospheric Deposition Program (NADP). 2018a. [accessed 2018 Sept 20]. http://nadp.slh.wisc.edu/data/sites/siteDetails.aspx/net=NTN&id=NY20.
  • National Atmospheric Deposition Program (NADP). 2018b. [accessed 2018 Oct 1]. http://nadp.slh.wisc.edu/data/sites/siteDetails.aspx/net=NTN&id=NY98.
  • National Oceanic and Atmospheric Administration (NOAA). 2018. 2019 NOAA Great Lakes habitat restoration regional partnership grants. [accessed 2019 Feb 1]. https://www.fisheries.noaa.gov/grant/2019-noaa-great-lakes-habitat-restoration-regional-partnership-grants.
  • National Research Council (NRC). 1992. Restoration of aquatic ecosystems: science, technology, and public policy. Washington, DC: The National Academies Press.
  • Patrick R, Reimer CW. 1966. The diatoms of the United States. Volume 1, Monographs of the Academy of Natural Sciences of Philadelphia Number 13, Philadelphia (PA).
  • Patrick R, Reimer CW. 1975. The diatoms of the United States. Volume 2, Monographs of the Academy of Natural Sciences of Philadelphia Number 13, Philadelphia (PA).
  • Pearson RF, Swackhamer DL, Eisenreich SJ, Long DT. 1997. Concentrations, accumulations, and inventories of toxaphene in sediments of the Great Lakes. Environ Sci Technol. 31(12):3523–3529.
  • Rattigan OV, Civerolo KL, Felton HD. 2017. Trends in wet precipitation, particulate, and gas-phase species in New York State. Atmos Poll Res. 8(6):1090–1102.
  • SanClements MD, Fernandez IJ, Lee RH, Roberti JA, Adams MB, Rue GA, McKnight DM. 2018. Long-term experimental acidification drives watershed scale shift in dissolved organic matter composition and flux. Environ Sci Technol. 52(5):2649–2657.
  • Seekel DA, Lapierre J-F, Karlsson J. 2015. Trade-offs between light and nutrient availability cross gradients of dissolved organic carbon concentration in Swedish lakes: implications for patterns in primary production. Can J Fish Aquat Sci. 72:1663–1671.
  • Seekel DA, Lapierre J-F, Ask J, Bergström A-K, Deininger A, Rodríguez P, Karlsson J. 2015. The influence of dissolved organic carbon on primary production in northern lakes. Limnol Oceanogr. 60:1276–1285.
  • Sivarajah B, Rühland KM, Smol J. 2017. Are diatoms recovering to pre-acidification assemblages in a warming world? Revisiting Killarney Provincial Park lakes (Ontario, Canada). Fund App Lim. 190(1):13–28.
  • Siver PA. 1991. The Biology of Mallomonas: Morphology, taxonomy, and ecology. New York (NY): Springer-Science + Business Media, B.V.
  • Smol J. 2008. Pollution of lake and rivers: A paleolimnological perspective. Malden (MA): Blackwell.
  • Solomon CT, Jones SE, Weidel BC, Buffam I, Fork ML, Karlsson J, Larson S, Lennon JT, Read JS, Sadro S, Saros J. 2015. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. Ecosystems. 18(3):376–389. doi:10.1007/s10021-015-9848-y.
  • Spaulding SA, Lubinski DJ, Potapova M. 2010. Diatoms of the United States [accessed 2018 Aug 1]. http://westerndiatoms.colorado.edu.
  • Stager JC. 2018. Still waters: the secret world of lakes. New York (NY): W.W. Norton.
  • Stager JC, Thill M. 2010. Climate change in the Champlain Basin: what natural resources managers can expect and do. Report for The Nature Conservancy [accessed 2018 Aug 30]. https://www.researchgate.net/publication/280204504_Climate_Change_in_the_Champlain_Basin_What_natural_resource_managers_can_expect_and_do.
  • Stager JC, McNulty S, Beier C, Chiarenzelli J. 2009. Historical patterns and effects of changes in Adirondack climates since the early 20th century. Adirondack J Environ Stud. 15:14–24.
  • Stager JC, Wiltse B, Hubeny JB, Yankowsky E, Nardelli D, Primack R. 2018. Climate variability and cultural eutrophication at Walden Pond (Massachusetts, USA) during the last 1800 years. PloS One. 13(4):e0191755.
  • Strock KE, Nelson SJ, Kahl JS, Saros JE, McDowell WH. 2014. Decadal trends reveal recent acceleration in the rate of recovery from acidification in the northeastern U.S. Environ Sci Technol. 48(9):4681–4689.
  • Sullivan TJ, Driscoll CT, Beier CM, Burtraw D, Fernandez IJ, Galloway JN, Gay DA, Goodale CL, Likens GE, Lovett GM, Watmough SA. 2018. Air pollution success stories in the United States: the value of long-term observations. Env Sci Poll. 84:69–73.
  • Sutherland RA. 1998. Loss-on-ignition estimates of organic matter and relationships to organic carbon in fluvial bed sediments. Hydrobiologia. 389(1/3):153–167.
  • Swackhamer DL, Pearson RF, Schottler SP. 1998. Toxaphene in the great lakes. Chemosphere. 37(9–12):2545–2561.
  • Terriere LC, Kiigemagi U, Gerlach AR, Borovicka RL. 1966. The persistence of toxaphene in lake water and its uptake by aquatic plants and animals. J Agric Food Chem. 14(1):66–69.
  • United States Environmental Information Administration (USEIA). 2019. [accessed 2019 Feb 13]. https://www.eia.gov/todayinenergy/detail.php/id=10.
  • United States Environmental Protection Agency (USEPA). 2019. [accessed 2019 Feb 4]. https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data.
  • United States Historical Climatology Network (USHCN). 2017. [accessed 2017 Aug 29]. http://cdiac.ess-dive.lbl.gov/epubs/ndp/ushcn/ushcn_map_interface.html.
  • Wallace ER. 1880. Descriptive Guide to the Adirondacks and Hand-Book of Travel to Saratoga Springs; Schroon Lake; Lakes Luzerne, George, and Champlain; the Thousand Islands; Massena Springs, and Trenton Falls. Columbian Book Company and Forest and Stream Publishing, Syracuse (NY).
  • Watmough SA, Eimers C, Baker S. 2016. Impediments to recovery from acid deposition. Atmos Env. 146:15–27. doi:10.1016/j.atmosenv.2016.03.021.
  • Wolfe AP, Siver P. 2013. A hypothesis linking chrysophyte microfossils to lake carbon dynamics on ecological and evolutionary time scales. Glob Plan Change. 111:189–198.
  • Xia X, Hopke PK, Crimmins BS, Pagano JJ, Milligan MS, Holsen TM. 2012. Toxaphene trends in the Great Lakes fish. J Great Lakes Res. 38(1):31–38.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.