465
Views
2
CrossRef citations to date
0
Altmetric
Articles

Annual variations in microcystin occurrence in Upper Klamath Lake, Oregon, based on high-throughput DNA sequencing, qPCR, and environmental parameters

&

References

  • Beversdorf LJ, Miller TR, McMahon KD. 2013. The role of nitrogen fixation in cyanobacterial bloom toxicity in a temperate, eutrophic lake. PloS One. 8(2):e56103. doi: 10.1371/journal.pone.0056103.
  • Bradbury JP, Colman SM, Reynolds RL. 2004. The history of recent limnological changes and human impact on Upper Klamath Lake, Oregon. J Paleolimnol. 31(2):151–165. doi: 10.1023/B:JOPL.0000019233.12287.18.
  • Chaffin JD, Davis TW, Smith DJ, Baer MM, Dick GJ. 2018. Interactions between nitrogen form, loading rate, and light intensity on Microcystis and Planktothrix growth and microcystin production. Harmful Algae. 73:84–97. doi: 10.1016/j.hal.2018.02.001.
  • Downing TG, Meyer C, Gehringer MM, van de Venter M. 2005. Microcystin content of Microcystis aeruginosa is modulated by nitrogen uptake rate relative to specific growth rate or carbon fixation rate. Environ Toxicol. 20(3):257–262. doi: 10.1002/tox.20106.
  • Eldridge SLC, Wood TM, Echols KR, Topping BR. 2013. Microcystins, nutrient dynamics, and other environmental factors during blooms of non-microcystin-producing Aphanizomenon flos-aquae in Upper Klamath Lake, Oregon, 2009. Lake and Reserv Manage. 29(1):68–81. doi: 10.1080/10402381.2013.775199.
  • Eldridge DB, Caldwell Eldridge SL, Schenk SL, Tanner LN, Wood TM. 2012a. Water-quality data from Upper Klamath and Agency Lakes, Oregon, 2009–10. 32 pp.
  • Eldridge SLC, Driscoll C, Dreher TW. 2017a. Using high-throughput DNA sequencing, genetic fingerprinting, and quantitative PCR as tools for monitoring bloom-forming and toxigenic cyanobacteria in Upper Klamath Lake, Oregon, 2013 and 2014. Reston, VA.
  • Eldridge SLC, Driscoll C, Dreher TW. 2017b. Datasets for high-throughput DNA sequencing, genetic fingerprinting, and quantitative PCR, Upper Klamath Lake, Oregon, 2013–14.
  • Eldridge SLC, Wherry SA, Wood TM. 2014. Statistical analysis of the water-quality monitoring program, Upper Klamath Lake, Oregon, and optimization of the program for 2013 and beyond. pp. 1–82. U.S. Geological Survey Open-File Report.
  • Eldridge SLC, Wood TM, Echols KR. 2012b. Spatial and temporal dynamics of cyanotoxins and their relation to other water quality variables in Upper Klamath Lake, Oregon, 2007–09. 34 pp.
  • Erratt KJ, Creed IF, Trick CG. 2018. Comparative effects of ammonium, nitrate and urea on growth and photosynthetic efficiency of three bloom-forming cyanobacteria. Freshw Biol. 63(7):626–638. doi: 10.1111/fwb.13099.
  • Ghaffar S, Stevenson RJ, Khan Z. 2017. Effect of phosphorus stress on Microcystis aeruginosa growth and phosphorus uptake. PloS One. 12(3):e0174349. doi: 10.1371/journal.pone.0174349.
  • Gobler CJ, Burkholder JM, Davis TW, Harke MJ, Johengen T, Stow CA, Van de Waal DB. 2016. The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae. 54:87–97. doi: 10.1016/j.hal.2016.01.010.
  • Jacoby JM, Collier DC, Welch EB, Hardy FJ, Crayton M. 2000. Environmental factors associated with a toxic bloom of Microcystis aeruginosa. Can J Fish Aquat Sci. 57(1):231–240. doi: 10.1139/f99-234.
  • Kaneko T, Nakajima N, Okamoto S, Suzuki I, Tanabe Y, Tamaoki M, Nakamura Y, Kasai F, Watanabe A, Kawashima K, et al. 2007. Complete genomic structure of the bloom-forming toxic cyanobacterium Microcystis aeruginosa NIES-843. DNA Res. 14(6):247–256. doi: 10.1093/dnares/dsm026.
  • Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, et al. 2001. Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res. 8(5):205–213; 227-53.
  • Kann J, Smith VH. 1999. Chlorophyll as a predictor of elevated pH in a hypereutrophic lake—estimating the probability of exceeding critical values for fish success using parametric and nonparametric models. Can J Fish Aquat Sci. 56:2262–2270. doi: 10.1139/f99-158.
  • Lehman EM, McDonald KE, Lehman JT. 2009. Whole lake selective withdrawal experiment to control harmful cyanobacteria in an urban impoundment. Water Res. 43(5):1187–1198. doi: 10.1016/j.watres.2008.12.007.
  • Lindenberg MK, Hoilman GR, Wood TM. 2009. Water quality conditions in Upper Klamath and Agency Lakes, Oregon, 2006. 54 pp.
  • Liu X, Lu X, Chen Y. 2011. The effects of temperature and nutrient ratios on Microcystis blooms in Lake Taihu, China: an 11-year investigation. Harmful Algae. 10(3):337–343. doi: 10.1016/j.hal.2010.12.002.
  • Long BM, Jones GJ, Orr PT. 2001. Cellular microcystin content in N-limited Microcystis aeruginosa can be predicted from growth rate. Appl Environ Microbiol. 67(1):278–283. doi: 10.1128/AEM.67.1.278-283.2001.
  • McDonald KE, Lehman JT. 2013. Dynamics of Aphanizomenon and Microcystis (cyanobacteria) during experimental manipulation of an urban impoundment. Lake Res Manage. 29(2):103–115. doi: 10.1080/10402381.2013.800172.
  • Miller TR, Beversdorf L, Chaston SD, McMahon KD. 2013. Spatiotemporal molecular analysis of cyanobacteria blooms reveals Microcystis–Aphanizomenon interactions. PloS One. 8(9):e74933. doi: 10.1371/journal.pone.0074933.
  • Monchamp M-E, Pick FR, Beisner BE, Maranger R. 2014. Nitrogen forms influence microcystin concentration and composition via changes in cyanobacterial community structure. PloS One. 9(1):e85573. doi: 10.1371/journal.pone.0085573.
  • Neilan BA, Pearson LA, Muenchhoff J, Moffitt MC, Dittmann E. 2013. Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ Microbiol. 15(5):1239–1253. doi: 10.1111/j.1462-2920.2012.02729.x.
  • Orr PT, Jones GJ. 1998. Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol Oceanogr. 43(7):1604–1614. doi: 10.4319/lo.1998.43.7.1604.
  • Paerl HW, Otten TG. 2016. Duelling 'CyanoHABs': unravelling the environmental drivers controlling dominance and succession among diazotrophic and non-N2-fixing harmful cyanobacteria. Environ Microbiol. 18(2):316–324. doi: 10.1111/1462-2920.13035.
  • Peng G, Martin RM, Dearth SP, Sun X, Boyer GL, Campagna SR, Lin S, Wilhelm SW. 2018. Seasonally relevant cool temperatures interact with N chemistry to increase microcystins produced in lab cultures of Microcystis aeruginosa NIES-843. Environ Sci Technol. 52(7):4127–4136. doi: 10.1021/acs.est.7b06532.
  • Rastogi RP, Sinha RP, Incharoensakdi A. 2014. The cyanotoxin-microcystins: current overview. Rev Environ Sci Biotechnol. 13(2):215–249. doi: 10.1007/s11157-014-9334-6.
  • Rinta-Kanto JM, Ouellette AJA, Boyer GL, Twiss MR, Bridgeman TB, Wilhelm SW. 2005. Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR. Environ Sci Technol. 39(11):4198–4205. doi: 10.1021/es048249u.
  • Saker ML, Welker M, Vasconcelos VM. 2007. Multiplex PCR for the detection of toxigenic cyanobacteria in dietary supplements produced for human consumption. Appl Microbiol Biotechnol. 73(5):1136–1142. doi: 10.1007/s00253-006-0565-5.
  • Sevilla E, Martin-Luna B, Vela L, Bes MT, Peleato ML, Fillat MF. 2010. Microcystin-LR synthesis as response to nitrogen: transcriptional analysis of the mcyD gene in Microcystis aeruginosa PCC7806. Ecotoxicology. 19(7):1167–1173. doi: 10.1007/s10646-010-0500-5.
  • Singh S, Rai PK, Chau R, Ravi AK, Neilan BA, Asthana RK. 2015. Temporal variations in microcystin-producing cells and microcystin concentrations in two fresh water ponds. Water Res. 69:131–142. doi: 10.1016/j.watres.2014.11.015.
  • Sipari H, Rantala-Ylinen A, Jokela J, Oksanen I, Sivonen K. 2010. Development of a chip assay and quantitative PCR for detecting microcystin synthetase E gene expression. Appl Environ Microbiol. 76(12):3797–3805. doi: 10.1128/AEM.00452-10.
  • Smith VH. 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science. 221(4611):669–671. doi: 10.1126/science.221.4611.669.
  • Stene EA. 1994. Klamath project. 42 pp.
  • Sugita C, Ogata K, Shikata M, Jikuya H, Takano J, Furumichi M, Kanehisa M, Omata T, Sugiura M, Sugita M. 2007. Complete nucleotide sequence of the freshwater unicellular cyanobacterium Synechococcus elongatus PCC 6301 chromosome: gene content and organization. Photosynth Res. 93(1–3):55–67. doi: 10.1007/s11120-006-9122-4.
  • Teubner K, Feyerabend R, Henning M, Nicklisch A, Woitkeand P, Kohl J-G. 1999. Alternative blooming of Aphanizomenon flos-aquae or Planktothrix agardhii inducedby the timing of the critical nitrogen: phosphorus ratio in hypertrophic riverine lakes. Arch Hydrobiol Spec Issues Advanc Limnol. 54:325–344.
  • Tillett D, Dittmann E, Erhard M, von Dohren H, Borner T, Neilan BA. 2000. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem Biol. 7(10):753–764.
  • Walker WW, Walker JD, Kann J. 2012. Evaluation of water and nutrient balances for the Upper Klamath Lake basin in water years 1992–2010. pp. 50, Klamath Tribes Natural Resources Department, Aquatic Ecosystem Sciences LLC.
  • Wells ML, Trainer VL, Smayda TJ, Karlson BSO, Trick CG, Kudela RM, Ishikawa A, Bernard S, Wulff A, Anderson DM, et al. 2015. Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae. 49:68–93. doi: 10.1016/j.hal.2015.07.009.
  • Wu Y, Li L, Zheng L, Dai G, Ma H, Shan K, Wu H, Zhou Q, Song L. 2015. Patterns of succession between bloom-forming cyanobacteria Aphanizomenon flos-aquae and Microcystis and related environmental factors in large, shallow Dianchi Lake, China. Hydrobiologia. 765(1):1–13. doi: 10.1007/s10750-015-2392-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.