272
Views
5
CrossRef citations to date
0
Altmetric
Articles

Chemical, biological, and trophic status of temperate lakes can be strongly influenced by the presence of late-glacial marine sediments

, , , , , , , & show all

References

  • Ahlgren J, Tranvik L, Gogoll A, Waldeback M, Markides K, Rydin E. 2005. Sediment depth attenuation of biogenic phosphorus compounds measured by P-31 NMR. Environ Sci Technol. 39(3):867–72. doi:10.1021/es049590h.
  • Amirbahman A, Lake B, Norton S. 2013. Seasonal phosphorus dynamics in the surficial sediment of two shallow temperate lakes. A solid-phase and pore-water study. Hydrobiologia. 701(1):65–77. doi:10.1007/s10750-012-1257-z.
  • ASTM D3177-02. 2007. Standard test methods for total sulfur in the analysis sample of coal and coke (withdrawn 2012). West Conshohocken (PA): ASTM International.
  • Boyle JF, Chiverrell RC, Norton SA, Plater AJ. 2013. A leaky model of long-term soil phosphorus dynamics. Global Biogeochem Cycles. 27(2):450–62. doi:10.1002/gbc.20039.
  • Carignan R, Flett RJ. 1981. Postdepositional mobility of phosphorus in lake sediments. Limnol Oceanogr. 26(2):361–6. doi:10.4319/lo.1981.26.2.0361.
  • CDM Smith. 2013. Diagnostic study of Lake Auburn and its watershed. Final report to Lake Auburn Watershed Protection Commission. [accessed 2016]. http://lakeauburnwater.org/wp-content/uploads/2014/05/2014-05-20-LAWPC-Final-Report.pdf.
  • Davis RB, Doyle RW. 1969. A piston corer for upper sediment in lakes. Limnol Oceanogr. 14(4):643–8. doi:10.4319/lo.1969.14.4.0643.
  • Davis RB, Norton SA, Kahl JS, Anderson DS, Bacon LC, Blake GM, Morrison MM, Patterson BP, Whiting MC, Hites RA, et al. 1986. A comparative paleolimnological study of the impacts of air pollution on three northern New England Lakes: preliminary results. 7-1 to 7-60. in Charles DF, Whitehead DR. 1986. Paleoecological Investigation of Recent Lake Adicification (PIRLA): interim report. Palo Alto (CA): Electric Power Research Institute.
  • Doolittle HA, Norton SA, Bacon LC, Ewing HA, Amirbahman A. 2018. The internal and watershed controls on hypolimnetic sediment phosphorus release in Lake Auburn, Maine, USA. Lake Reservoir Manage. 34(3):258. doi:10.1080/10402381.2018.1423588.
  • Dudley RW. 2004. Water budget for Lake Auburn, Maine, May 1, 2000 through April 30, 2003. U. S. Geological Survey. Scientific Investigation Report 2004-5106. Washington (DC). 23 p.
  • Einsele W. 1936. Uber die Beziehungen des Eisenkreislaufs zum Phosphatkreislauf im eutrophen See. Archiv für Hydrobiol. 29:664–86.
  • Faegri K, Iversen J, Krzywinski K. 1989. Textbook of pollen analysis. 4th ed. New York (NY): John Wiley & Sons.
  • Fernandez IJ, Adams MB, SanClement MD, Norton SA. 2010. Comparing decadal responses of whole-watershed manipulations at the Bear Brook and Fernow experiments. Environ Monit Assess. 171(1-4):149–62. doi:10.1007/s10661-010-1524-2.
  • Fernandez IJ, Schmitt CV, Birkel S, Stancioff E, Pershing A, Kelley JT, Runge J, Jacobson GL, Mayewski PA. 2015. Maine’s climate future: 2015 update. Orono (ME). University of Maine.
  • Fry B. 1986. Stable sulfur isotopic distributions and sulfate reduction in lake sediments of the Adirondack Mountains, New York. Biogeochemistry. 2(4):329–43. doi:10.1007/BF02180324.
  • Gächter R, Meyer JS, Mares A. 1988. Contribution of bacteria to release and fixation of phosphorus in lake sediments. Limnol Oceanogr. 33:1542–58. doi:10.4319/lo.1988.33.6part2.1542.
  • Gobeil C, Tessier A, Couture R-M. 2013. Upper Mississippi Pb as a mid-1800s chronostratigraphic marker in sediments from seasonally anoxic lakes in Eastern Canada. Geochim Cosmochim Acta. 113:125–35. doi:10.1016/j.gca.2013.02.023.
  • Golterman HL. 1995. The role of the iron hydroxide-phosphate-sulfide system in the phosphate exchange between sediments and overlying water. Hydrobiologia. 297(1):43–54. doi:10.1007/BF00033500.
  • Golterman HL. 1998. The distribution of phosphate over iron-bound and calcium-bound phosphate in stratified sediments. Hydrobiologia. 364(1):75–81. doi:10.1007/BF00014722.
  • Hildreth CT. 2008. Lake Auburn West Quadrangle, Open File report 08-72. Augusta (ME): Maine Geological Survey.
  • Hodgkins GA, James IC, Huntington TG. 2002. Historical changes in lake ice-out dates as indicators of climate change in New England, 1850-2000. Int J Climatol. 22(15):1819–27. doi:10.1002/joc.857.
  • Homyak P, Sickman J, Melack J. 2014. Phosphorus in sediments of high-elevation lakes in the Sierra Nevada (California): implications for internal phosphorus loading. Aquat Sci. 76(4):511–25. doi:10.1007/s00027-014-0350-y.
  • Hupfer M, Ruübe B, Schmieder P. 2004. Origin and diagenesis of polyphosphate in lake sediments: a 31P NMR study. Limnol Oceanogr. 49(1):1–10. doi:10.4319/lo.2004.49.1.0001.
  • Hussey AM. 1983. Bedrock geology of the Lewiston Quadrangle. Augusta (ME): Maine Geological Survey. Open file 83–84.
  • Kopáček J, Borovec J, Hejzlar J, Ulrich K-U, Norton SA, Amirbahman A. 2005. Aluminum control of phosphorus sorption by lake sediments. Environ Sci Technol. 39(22):8784–9. doi:10.1021/es050916b.
  • Kopáček J, Marešová M, Norton SA, Porcal P, Veselý J. 2006. Photochemical source of metals for sediments. Environ Sci Technol. 40(14):4455–9. doi:10.1021/es0600532.
  • Kopáček J, Marešová M, Hejzlar J, Norton SA. 2007. Natural inactivation of phosphorus by aluminum in pre-industrial lake sediments. Limnol Oceanogr. 52:1147–55.
  • Krammer K, Lange-Bertalot H. 1991. Süßwasserflora von Mitteleuropa, 3 Teil: Cantrales, Fragilariaceae, Eunotiaceae. Stuttgart (Germany): Gustav Fischer Verlag. p. 576.
  • Lake BA, Coolidge KM, Norton SA, Amirbahman A. 2007. Factors contributing to the internal loading of phosphorus from anoxic sediments in six Maine, USA, lakes. Sci Total Environ. 373(2-3):534–41. doi:10.1016/j.scitotenv.2006.12.021.
  • MEDEP (Maine Department of Environmental Protection). 2010. Unpublished data files for lake chemistry. Augusta (ME).
  • MEDIFW (Maine Department of Inland Fish and Wildlife). Unpublished data files for lake bathymetry. Augusta (ME).
  • Mortimer CH. 1941. The exchange of dissolved substances between mud and water in lakes. J Ecology. 29(2):280–329. doi:10.2307/2256395.
  • [NADP] National Atmospheric Deposition Program. National Trends Network. [accessed 2018 Jan 2]. http://nadp.slh.wisc.edu/data/sites/list/?net=NTN.
  • Navrátil T, Norton SA, Fernandez IJ, Nelson SJ. 2010. Twenty-year inter-annual trends and seasonal variations in precipitation and stream water chemistry at the Bear Brook Watershed in Maine, USA. Environ Monit Assess. 171(1-4):23–46. doi:10.1007/s10661-010-1527-z.
  • Nieratko D. 1992. Factors controlling phosphorous loading to Maine lakes: a statistical model [Unpub MSc thesis]. Orono (ME): University of Maine.
  • Norton SA, Perry RH, Saros J, Jacobson GL, Jr., Fernandez IJ, Kopáček J, Wilson TA, SanClements M. 2011. The controls on phosphorus availability in a boreal lake ecosystem since deglaciation. J Paleolimnol. 46(1):107–22. doi:10.1007/s10933-011-9526-9.
  • Norton SA, Kopáček J, Fernandez IJ. 2014. Acidification and acid rain. In: Holland HD, Turekian KK, editors. Treatise on geochemistry. Vol. 11. London (UK): Elsevier. p. 379–414.
  • Norton SA, Kopáček J, Jacobson GL, Navrátil T. 2016. A comparative study of long-term Hg and Pb sediment archives. Environ Chem. 13(3):517–27. doi:10.1071/EN15114.
  • Nuclear Test Ban Treaty. 1963. Treaties and other international agreements series #5433; General records of the U.S. Government; Record Group 11. United States National Archives. Washington (DC).
  • Nürnberg GK. 1995. Quantifying anoxia in lakes. Limnol Oceanogr. 40(6):1100–11. doi:10.4319/lo.1995.40.6.1100.
  • Osberg PH, Hussey AM, Boone GM. 1985. Bedrock geologic map of Maine. Augusta (ME): Maine Geological Survey. 1:500,000.
  • Ostrofsky ML. 2012. Differential post-depositional mobility of phosphorus species in lake sediments. J Paleolimnol. 48(3):559–69. doi:10.1007/s10933-012-9631-4.
  • Patrick R, Reimer CW. 1966. The diatoms of the United States. Monogr Acad Nat Sci Philadelphia. 1(13):688.
  • Patrick R, Reimer CW. 1975. The diatoms of the United States. Monogr Acad Nat Sci Philadelphia. 2(13):213.
  • Penn MR, Auer T, Van Orman EL, Korienek JJ. 1995. Phosphorus diagenesis in lake sediments: investigations using fractionation techniques. Mar Freshwater Res. 46(1):89–99. doi:10.1071/MF9950089.
  • Psenner R, Pucsko R, Sager M. 1984. Die Fraktionierung organischer und anorganischer Phosphorverbindungen von Sedimenten—Versuch einer Definition ökologisch wichtiger Frakionen. Archive Für Hydrobiol Suppl. 70:111–55.
  • Saros JE, Michel J, Interlandi SJ, Wolfe AP. 2005. Resource requirements of Asterionella Formosa and Fragilaria crotonensis in oligotrophic alpine lakes: implications for recent phytoplankton community reorganizations. Can J Fish Aquat Sci. 62(7):1681–9. doi:10.1139/f05-077.
  • Stumm W, Morgan JJ. 1996. Aquatic chemistry. 3rd ed. New York (NY): Wiley Interscience. p. 1022.
  • Thompson WB. 2008. Lake Auburn West Quadrangle, Surficial Geology, Open file report 08-69. Augusta (ME): Maine Geological Survey.
  • Thompson WB, Borns HW. 1985. Surficial geologic map of Maine, 1:500,000. Augusta (ME): Maine Geological Survey.
  • Vandergoes MJ. 2000. High resolution record of late Quaternary vegetation and climate change, south Westland, New Zealand [Unpub PhD thesis]. Dunedin (New Zealand): University of Otago.
  • Wentzel MC, Lötter LH, Ekama GA, Loewenthal RE, Marais GR. 1991. Evaluation of biochemical models for biological excess phosphorus removal. Water Sci Technol. 23(4-6):567–74. doi:10.2166/wst.1991.0506.
  • Wilson TA, Amirbahman A, Norton SA, Voytek MA. 2010. Sedimentary phosphorus dynamics in oligotrophic lakes. J Paleolimnol. 44(1):279–94. doi:10.1007/s10933-009-9403-y.
  • Wilson TA, Norton SA, Lake B, Amirbahman A. 2008. Sediment geochemistry of Al, Fe, and P for two oligotrophic Maine lakes during a period of acidification and recovery. Sci Tot Environ. 404(2-3):269–75. doi:10.1016/j.scitotenv.2008.06.061.
  • Yanagisawa F, Sakai H. 1983. Thermal decomposition of barium sulfate-vanadium pentoxide-silica glass mixtures for preparation of sulfur dioxide in sulfur isotope ratio measurements. Anal Chem. 55(6):985–7. doi:10.1021/ac00257a046.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.