3,371
Views
1
CrossRef citations to date
0
Altmetric
Articles

Detections of cyanobacteria harmful algal blooms (cyanoHABs) in New York State, United States (2012–2020)

ORCID Icon, , &

References

  • An J, Carmichael WW. 1994. Use of a colorimetric protein phosphatase inhibition assay and enzyme linked immunosorbent assay for the study of microcystins and nodularins. Toxicon. 32(12):1495–1507. doi:10.1016/0041-0101(94)90308-5.
  • Anderson DM, Fensin E, Gobler CJ, Hoeglund AE, Hubbard KA, Kulis DM, Landsberg JH, Lefebvre KA, Provoost P, Richlen ML, et al. 2021. Marine harmful algal blooms (HABs) in the United States: history, current status and future trends. Harmful Algae. 102:101975. doi:10.1016/j.hal.2021.101975.
  • Backer L, Manassaram-Baptiste D, LePrell R, Bolton B. 2015. Cyanobacteria and algae blooms: review of health and environmental data from the Harmful Algal Bloom-Related Illness Surveillance System (HABISS) 2007–2011. Toxins (Basel). 7(4):1048–1064. doi:10.3390/toxins7041048.
  • Bertani I, Steger CE, Obenour DR, Fahnenstiel GL, Bridgeman TB, Johengen TH, Sayers MJ, Shuchman RA, Scavia D. 2017. Tracking cyanobacteria blooms: do different monitoring approaches tell the same story? Sci Total Environ. 575:294–308. doi:10.1016/j.scitotenv.2016.10.023.
  • Beutler M, Wiltshire KH, Meyer B, Moldaenke C, Lüring C, Meyerhöfer M, Hansen UP, Dau H. 2002. A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynthesis research. 72(1):39–53.
  • Boyer GL. 2008. Cyanobacterial toxins in New York and the lower Great Lakes ecosystems. In Cyanobacterial harmful algal blooms: state of the science and research needs. Springer. New York, NY. pp. 153–165.
  • Boyer GL. 2020. LCMS-SOP determination of microcystins in water samples by high performance liquid chromatography (HPLC) with single quadrupole mass spectrometry (MS). Limnol. Oceanogr. doi:10.17504/protocols.io.bck2iuye
  • Brooks BW, Lazorchak JM, Howard MD, Johnson MV, Morton SL, Perkins DA, Reavie ED, Scott GI, Smith SA, Steevens JA. 2016. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environ Toxicol Chem. 35(1):6–13. doi:10.1002/etc.3220.
  • Carmichael WW, Boyer GL. 2016. Health impacts from cyanobacteria harmful algae blooms: implications for the North American Great Lakes. Harmful Algae. 54:194–212. doi:10.1016/j.hal.2016.02.002.
  • Catherine A, Escoffier N, Belhocine A, Nasri A, Hamlaoui S, Yéprémian C, Bernard C, Troussellier M. 2012. On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs. Water Res. 46(6):1771–1784. doi:10.1016/j.watres.2011.12.056.
  • Chorus I, Bartram J. 1999. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. CRC Press.
  • Chorus I, Welker M. 2021. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. 2nd ed. CRC Press.
  • Davis TW, Stumpf R, Bullerjahn GS, McKay RML, Chaffin JD, Bridgeman TB, Winslow C. 2019. Science meets policy: a framework for determining impairment designation criteria for large waterbodies affected by cyanobacterial harmful algal blooms. Harmful Algae. 81:59–64. doi:10.1016/j.hal.2018.11.016.
  • Dodds WK, Bouska WW, Eitzmann JL, Pilger TJ, Pitts KL, Riley AJ, Schloesser JT, Thornbrugh DJ. 2009. Eutrophication of US freshwaters: analysis of potential economic damages. Environ Sci Technol. 43(1):12–19. doi:10.1021/es801217q.
  • Figgatt M, Hyde J, Dziewulski D, Wiegert E, Kishbaugh S, Zelin G, Wilson L. 2017. Harmful algal bloom–associated illnesses in humans and dogs identified through a pilot surveillance system—New York, 2015. MMWR Morb Mortal Wkly Rep. 66(43):1182–1184. doi:10.15585/mmwr.mm6643a5.
  • Gorham T, Jia Y, Shum C, Lee J. 2017. Ten-year survey of cyanobacterial blooms in Ohio’s waterbodies using satellite remote sensing. Harmful Algae. 66:13–19. doi:10.1016/j.hal.2017.04.013.
  • Graham JL, Loftin KA, Kamman N. 2009. Monitoring recreational freshwaters. Lakeline 29:18–24.
  • Graham JL, Loftin KA, Ziegler AC, Meyer MT. 2008. Guidelines for design and sampling for cyanobacterial toxin and taste-and-odor studies in lakes and reservoirs. U.S. Geological Survey.
  • Hallegraeff GM, Anderson DM, Belin C, Bottein M-YD, Bresnan E, Chinain M, Enevoldsen H, Iwataki M, Karlson B, McKenzie CH, et al. 2021. Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts. Commun Earth Environ. 2(1):1–10. doi:10.1038/s43247-021-00178-8.
  • Hardy FJ, Preece E, Backer L. 2021. Status of state cyanoHAB outreach and monitoring efforts, United States. Lake Reservoir Manage. 37(3):246–260.
  • Heisler J, Glibert P, Burkholder J, Anderson D, Cochlan W, Dennison W, Gobler C, Dortch Q, Heil C, Humphries E, et al. 2008. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae. 8(1):3–13. doi:10.1016/j.hal.2008.08.006.
  • Helsel DR, Frans LM. 2006. Regional Kendall test for trend. Environ Sci Technol. 40(13):4066–4073. doi:10.1021/es051650b.
  • Ho JC, Michalak AM. 2015. Challenges in tracking harmful algal blooms: a synthesis of evidence from Lake Erie. J Great Lakes Res. 41(2):317–325. doi:10.1016/j.jglr.2015.01.001.
  • Ho JC, Michalak AM, Pahlevan N. 2019. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574(7780):667–670. doi:10.1038/s41586-019-1648-7.
  • Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM. 2018. Cyanobacterial blooms. Nat Rev Microbiol. 16(8):471–483. doi:10.1038/s41579-018-0040-1.
  • Jankowiak J, Hattenrath‐Lehmann T, Kramer BJ, Ladds M, Gobler CJ. 2019. Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie. Limnol Oceanogr. 64(3):1347–1370. doi:10.1002/lno.11120.
  • Kassambara A. 2021. rstatix: pipe-friendly framework for basic statistical tests. R package version 0.7.0. Available from: https://CRAN.R-project.org/package=rstatix.
  • Kuznetsova A, Brockhoff PB, Christensen RHB. 2017. lmerTest package: tests in linear mixed effects models. J Stat Soft. 82 (13):1–26. Available from: doi:10.18637/jss.v082.i13.
  • Loftin KA, Graham JL, Hilborn ED, Lehmann SC, Meyer MT, Dietze JE, Griffith CB. 2016. Cyanotoxins in inland lakes of the United States: occurrence and potential recreational health risks in the EPA National Lakes Assessment 2007. Harmful Algae. 56:77–90. doi:10.1016/j.hal.2016.04.001.
  • Mantzouki E, Lürling M, Fastner J, De Senerpont Domis L, Wilk-Woźniak E, Koreivienė J, Seelen L, Teurlincx S, Verstijnen Y, Krztoń W, et al. 2018. Temperature effects explain continental scale distribution of cyanobacterial toxins. Toxins 10(4):156. doi:10.3390/toxins10040156.
  • Matthews D, Matt M, Mueller N, Jun S. 2021. Citizen science advances the understanding of CyanoHABs in New York State Lakes. Lakeline 41(2):34–38.
  • Metcalf JS, Banack SA, Powell JT, Tymm FJ, Murch SJ, Brand LE, Cox PA. 2018. Public health responses to toxic cyanobacterial blooms: perspectives from the 2016 Florida event. Water Policy. 20(5):919–932. doi:10.2166/wp.2018.012.
  • Millard SP. 2013. EnvStats: an R package for environmental statistics. New York (NY): Springer. Available from: https://www.springer.com>.
  • [NYS]. New York State. 2011. New York Codes, Rules and Regulations VOLUME A (Title 10) Part 6 - Swimming Pools, Bathing Beaches and Recreational Aquatic Spray Grounds Title: SubPart 6-2 - Bathing Beaches; [cited 16 Dec 2022]. Available from https://regs.health.ny.gov/content/subpart-6-2-bathing-beaches.
  • [NYSDEC]. New York State Department of Environmental Conservation. 2021a. Harmful algal bloom program guide, version 3. Albany (NY): New York State Department of Environmental Conservation.
  • NYSDEC. 2021b. Quality assurance management plan for the New York Citizens Statewide Lake Assessment Program (CSLAP). Albany (NY): New York State Department of Environmental Conservation.
  • NYSDEC. 2021c. Standard operating procedure: harmful algal blooms sampling and analysis. Albany (NY): New York State Department of Environmental Conservation.
  • [NYSDOH] New York State Department of Health. 2021. Harmful blue-green algae bloom beach trends: 2009-2021 trends; [cited 30 Aug 2022]. Available from https://www.health.ny.gov/environmental/water/drinking/bluegreenalgae/beachsurveillance.htm.
  • O’Neil JM, Davis TW, Burford MA, Gobler CJ. 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae. 14:313–334. doi:10.1016/j.hal.2011.10.027.
  • Paerl HW, Havens KE, Hall NS, Otten TG, Zhu M, Xu H, Zhu G, Qin B. 2020. Mitigating a global expansion of toxic cyanobacterial blooms: confounding effects and challenges posed by climate change. Mar Freshwater Res. 71(5):579–592. doi:10.1071/MF18392.
  • Perri KA, Sullivan JM, Boyer GL. 2015. Harmful algal blooms in Sodus Bay, Lake Ontario: a comparison of nutrients, marina presence, and cyanobacterial toxins. J Great Lakes Res. 41(2):326–337. doi:10.1016/j.jglr.2015.03.022.
  • Pick FR. 2016. Blooming algae: a Canadian perspective on the rise of toxic cyanobacteria. Can J Fish Aquat Sci. 73(7):1149–1158. doi:10.1139/cjfas-2015-0470.
  • R Core Team. 2021. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Available from https://www.R-project.org/.
  • Rigosi A, Hanson P, Hamilton DP, Hipsey M, Rusak JA, Bois J, Sparber K, Chorus I, Watkinson AJ, Qin B, et al. 2015. Determining the probability of cyanobacterial blooms: the application of Bayesian networks in multiple lake systems. Ecol Appl. 25(1):186–199. doi:10.1890/13-1677.1.
  • Smith ZJ, Martin RM, Wei B, Wilhelm SW, Boyer GL. 2019. Spatial and temporal variation in paralytic shellfish toxin production by benthic Microseira (Lyngbya) wollei in a freshwater New York lake. Toxins 11(1):44. doi:10.3390/toxins11010044.
  • Srivastava A, Singh S, Ahn C-Y, Oh H-M, Asthana RK. 2013. Monitoring approaches for a toxic cyanobacterial bloom. Environ Sci Technol. 47(16):8999–9013. doi:10.1021/es401245k.
  • Taranu ZE, Gregory-Eaves I, Leavitt PR, Bunting L, Buchaca T, Catalan J, Domaizon I, Guilizzoni P, Lami A, McGowan S, et al. 2015. Acceleration of cyanobacterial dominance in north temperate‐subarctic lakes during the Anthropocene. Ecol Lett. 18(4):375–384. doi:10.1111/ele.12420.
  • Topp SN, Pavelsky TM, Stanley EH, Yang X, Griffin CG, Ross MRV. 2021. Multi-decadal improvement in US lake water clarity. Environ Res Lett.16(5):055025 10.1088/1748-9326/abf002.
  • Vaughan MCH, Campbell MK, Fisher L, O’Brien B, Gorney RM, Shambaugh A, Sopher LS, Pierson O, Howe EA. 2021. Lake Champlain community scientist volunteer network communicates critical cyanobacteria information to region-wide stakeholders. Contemp Water Res. 174(1):6–20. doi:10.1111/j.1936-704X.2021.3358.x.
  • Watzin MC, Miller EB, Shambaugh AD, Kreider MA. 2006. Application of the WHO alert level framework to cyanobacterial monitoring of Lake Champlain, Vermont. Environ Toxicol. 21(3):278–288. doi:10.1002/tox.20181.
  • Wilkinson G, Walter JA, Buelo C, Pace M. 2022. No evidence of widespread algal bloom intensification in hundreds of lakes. Front Ecol Environ. 20(1):16–21. doi:10.1002/fee.2421.
  • Winter JG, DeSellas AM, Fletcher R, Heintsch L, Morley A, Nakamoto L, Utsumi K. 2011. Algal blooms in Ontario, Canada: increases in reports since 1994. Lake Reservoir Manage. 27(2):107–114. doi:10.1080/07438141.2011.557765.