405
Views
0
CrossRef citations to date
0
Altmetric
Articles

Environmental determinants of coarse woody habitat in gravel pit lakes

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ahrenstorff TD, Sass GG, Helmus MR. 2009. The influence of littoral zone coarse woody habitat on home range size, spatial distribution, and feeding ecology of largemouth bass (Micropterus salmoides). Hydrobiologia 623(1):223–233. doi: 10.1007/s10750-008-9660-1.
  • [AdV] Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland [Working Committee of the Surveying Authorities of the States of the Federal Republic of Germany] 2006. Documentation on the Modelling of Geoinformation of Official Surveying and Mapping (GeoInfoDok). Chapter 5; Section 5.4; Version 5.1; [cited 07 July 2023]. Available from https://www.adv-online.de
  • Arlinghaus R, Cyrus E-M, Eschbach E, Fujitani M, Hühn D, Johnston F, Pagel T, Riepe C. 2015. Hand in Hand für eine nachhaltige Angelfischerei Ergebnisse und Empfehlungen aus fünf Jahren praxisorientierter Forschung zu Fischbesatz und seinen Alternativen. Vol. 28. Berlin: Berichte Des IGB.
  • Arlinghaus R, Klefoth T, Matern S, Radinger J, Nikolaus R, Meyerhoff J, Schafft M, Cyrus E-M, Emmrich M, Hering D, et al. 2023. Biodiversität, Angeln und Gesellschaft: Wissensbasierte Empfehlungen für ein nachhaltiges Fischereimanagement an Baggerseen. Vol. 32. Berlin: Berichte des IGB.
  • Arlinghaus R, Lorenzen K, Johnston BM, Cooke SJ, Cowx IG. 2016. Management of freshwater fisheries: addressing habitat, people and fishes In: Craig J, editor. Freshwater Fisheries Ecology. Oxford: Blackwell Science. p. 557–579.
  • Arlinghaus R, Mehner T. 2005. Determinants of management preferences of recreational anglers in Germany: Habitat management versus fish stocking. Limnologica 35(1-2):2–17. doi: 10.1016/j.limno.2004.10.001.
  • Arlinghaus R, Riepe C, Theis S, Pagel T, Fujitani M. 2022. Dysfunctional information feedbacks cause the emergence of management panaceas in social-ecological systems: the case of fish stocking in inland recreational fisheries. J Outdoor Recreat. 38:100475. doi: 10.1016/j.jort.2021.100475.
  • Benke AC, Wallace JB. 2003. Influence of wood on invertebrate communities in streams and rivers In: Gregory SV, Boyer KL, Gurnell AM, editors. The ecology and management of wood in world rivers. Bethesda, Maryland: Am Fish Soc Symp. p.149–177.
  • Biggs J, von Fumetti S, Kelly-Quinn M. 2017. The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia 793(1):3–39. doi: 10.1007/s10750-016-3007-0.
  • Blanchette ML, Lund MA. 2016. Pit lakes are a global legacy of mining: an integrated approach to achieving sustainable ecosystems and value for communities. Curr Opin Environ Sustain. 23:28–34. doi: 10.1016/j.cosust.2016.11.012.
  • Bozek MA. 2001. A second life for trees in lakes: as useful in water as they were on land. Lakeline.
  • Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Machler M, Bolker BM. 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R J. 9(2):378–400. doi: 10.32614/RJ-2017-066.
  • Christensen DL, Herwig BR, Schindler DE, Carpenter SR. 1996. Impacts of lakeshore residential development on coarse woody debris in North Temperate Lakes. Ecol Appl.6(4):1143–1149. doi: 10.2307/2269598.
  • Craney TA, Surles JG. 2002. Model-dependent variance inflation factor cutoff values. Qual Eng. 14(3):391–403. doi: 10.1081/QEN-120001878.
  • Czarnecka M. 2016. Coarse woody debris in temperate littoral zones: implications for biodiversity, food webs and lake management. Hydrobiologia 767(1):13–25. doi: 10.1007/s10750-015-2502-z.
  • Czarnecka M, Pilotto F, Pusch MT. 2014. Is coarse woody debris in lakes a refuge or a trap for benthic invertebrates exposed to fish predation? Freshw Biol. 59(11):2400–2412. doi: 10.1111/fwb.12446.
  • Dossi F, Leitner P, Graf W. 2020. Age matters: substrate-specific colonization patterns of benthic invertebrates on installed large wood. Aquat Ecol. 54(3):741–760. doi: 10.1007/s10452-020-09772-y.
  • [DWD] Deutscher Wetterdienst [German Meteorological Service] 2018. Historical 10-minute station observation of max/min – mean wind speed and wind gust for Germany, version V1. [cited 07 July 2023]. https://www.dwd.de
  • Eadie JMcA, Keast A. 1984. Resource heterogeneity and fish species diversity in lakes. Can J Zool. 62(9):1689–1695. doi: 10.1139/z84-248.
  • Gaeta JW, Sass GG, Carpenter SR. 2014. Drought-driven lake level decline: effects on coarse woody habitat and fishes. Can J Fish Aquat Sci. 71(2):315–325. doi: 10.1139/cjfas-2013-0451.
  • Guyette RP, Cole WG. 1999. Age characteristics of coarse woody debris (Pinus strobus) in a lake littoral zone. Can J Fish Aquat Sci. 56(3):496–505. doi: 10.1139/f98-177.
  • Helmus MR, Sass GG. 2008. The rapid effects of a whole-lake reduction of coarse woody debris on fish and benthic macroinvertebrates. Freshwater Biol. 53(7):1423–1433. doi: 10.1111/j.1365-2427.2008.01974.x.
  • [ISO] International Organization for Standardization. 2004. Water quality – determination of phosphorus – ammonium molybdat spectrometric method.
  • Jennings MJ, Emmons EE, Hatzenbeler GR, Edwards C, Bozek MA. 2003. Is littoral habitat affected by residential development and land use in watersheds of Wisconsin lakes? Lake Reserv Manag.19(3):272–279. doi: 10.1080/07438140309354092.
  • Johnston R, Jones K, Manley D. 2018. Confounding and collinearity in regression analysis: a cautionary tale and an alternative procedure, illustrated by studies of British voting behaviour. Qual Quant. 52(4):1957–1976. doi: 10.1007/s11135-017-0584-6.
  • Kaufmann PR, Peck DV, Paulsen SG, Seeliger CW, Hughes RM, Whittier TR, Kamman NC. 2014a. Lakeshore and littoral physical habitat structure in a national lakes assessment. Lake Reserv Manag. 30(2):192–215. doi: 10.1080/10402381.2014.906524.
  • Kaufmann PR, Hughes RM, Van Sickle J, Whittier TR, Seeliger CW, Paulsen SG. 2014b. Lakeshore and littoral physical habitat structure: a field survey method and its precision. Lake Reserv Manag. 30(2):157–176. doi: 10.1080/10402381.2013.877543.
  • Klefoth T, Wegener N, Meyerhoff J, Arlinghaus R. 2023. Do anglers and managers think similarly about stocking, habitat management and harvest regulations? Implications for the management of community-governed recreational fisheries. Fish Res. 260:106589. doi: 10.1016/j.fishres.2022.106589.
  • Kovalenko KE, Thomaz SM, Warfe DM. 2012. Habitat complexity: approaches and future directions. Hydrobiologia 685(1):1–17. doi: 10.1007/s10750-011-0974-z.
  • Lawson ZJ, Gaeta JW, Carpenter SR. 2011. Coarse woody habitat, lakeshore residential development, and largemouth bass nesting behavior. N Am J Fish Manag. 31(4):666–670. doi: 10.1080/02755947.2011.608990.
  • Lewin W-C, Mehner T, Ritterbusch D, Brämick U. 2014. The influence of anthropogenic shoreline changes on the littoral abundance of fish species in German lowland lakes varying in depth as determined by boosted regression trees. Hydrobiologia 724(1):293–306. doi: 10.1007/s10750-013-1746-8.
  • Lewin W-C, Okun N, Mehner T. 2004. Determinants of the distribution of juvenile fish in the littoral area of a shallow lake. Freshwater Biol. 49(4):410–424. doi: 10.1111/j.1365-2427.2004.01193.x.
  • Maday A, Matern S, Monk CT, Klefoth T, Wolter C, Arlinghaus R. 2023. Seasonal and diurnal patterns of littoral microhabitat use by fish in gravel pit lakes, with special reference to supplemented deadwood brush piles. Hydrobiologia 850(7):1557–1581. doi: 10.1007/s10750-023-05152-3.
  • Mallory EC, Ridgway MS, Gordon AM, Kaushik NK. 2000. Distribution of woody debris in a small headwater lake, central Ontario, Canada. Fal. 148(4):587–606. doi: 10.1127/archiv-hydrobiol/148/2000/587.
  • Mandrak NE, Crossman EJ. 1992. Postglacial dispersal of freshwater fishes into Ontario. Can J Zool. 70(11):2247–2259. doi: 10.1139/z92-302.
  • Marburg AE, Bassak SB, Kratz TK, Turner MG. 2009. The demography of coarse wood in north temperate lakes. Freshw Biol. 54(5):1110–1119. doi: 10.1111/j.1365-2427.2008.02158.x.
  • Marburg AE, Turner MG, Kratz TK. 2006. Natural and anthropogenic variation in coarse wood among and within lakes: coarse wood in lakes. J Ecol. 94(3):558–568. doi: 10.1111/j.1365-2745.2006.01117.x.
  • Matern S, Emmrich M, Klefoth T, Wolter C, Nikolaus R, Wegener N, Arlinghaus R. 2019. Effect of recreational-fisheries management on fish biodiversity in gravel pit lakes, with contrasts to unmanaged lakes. J Fish Biol. 94(6):865–881. doi: 10.1111/jfb.13989.
  • Matern S, Klefoth T, Wolter C, Arlinghaus R. 2021. Environmental determinants of fish abundance in the littoral zone of gravel pit lakes. Hydrobiologia 848(10):2449–2471. doi: 10.1007/s10750-021-04563-4.
  • Matern S, Klefoth T, Wolter C, Hussner A, Simon J, Arlinghaus R. 2022. Fish community composition in small lakes: the impact of lake genesis and fisheries management. Freshw Biol. 67(12):2130–2147. doi: 10.1111/fwb.14001.
  • Meyerhoff J, Klefoth T, Arlinghaus R. 2019. The value artificial lake ecosystems provide to recreational anglers: implications for management of biodiversity and outdoor recreation. J Environ Manage. 252:109580. doi: 10.1016/j.jenvman.2019.109580.
  • Mollema PN, Antonellini M. 2016. Water and (bio)chemical cycling in gravel pit lakes: a review and outlook. Earth Sci Rev. 159:247–270. doi: 10.1016/j.earscirev.2016.05.006.
  • Müllerová A, Řehounková K, Prach K. 2022. Succession of aquatic and littoral vegetation in disused sandpits. Land Degrad Dev. 33(2):257–268. doi: 10.1002/ldr.4142.
  • Naiman RJ, Décamps H. 1997. The ccology of interfaces: riparian zones. Annu Rev Ecol Syst. 28(1):621–658. doi: 10.1146/annurev.ecolsys.28.1.621.
  • Nash KT, Hendry K, Cragg-Hine D. 1999. The use of brushwood bundles as fish spawning media: brushwood bundles as fish-spawning material. Fish Manag Ecol. 6(5):349–356. doi: 10.1046/j.1365-2400.1999.00153.x.
  • Newbrey MG, Bozek MA, Jennings MJ, Cook JE. 2005. Branching complexity and morphological characteristics of coarse woody structure as lacustrine fish habitat. Can J Fish Aquat Sci. 62(9):2110–2123. doi: 10.1139/f05-125.
  • Nikolaus R, Matern S, Schafft M, Klefoth T, Maday A, Wolter C, Manfrin A, Lemm JU, Arlinghaus R. 2020. Einfluss anglerischer Bewirtschaftung auf die Biodiversität von Baggerseen: Eine vergleichende Studie verschiedener gewässergebundener Organismengruppen. Lauterbornia 87:153–187.
  • Nikolaus R, Matern S, Schafft M, Maday A, Wolter C, Klefoth T, Arlinghaus R. 2022. Influence of protected riparian areas on habitat structure and biodiversity in and at small lakes managed by recreational fisheries. Fish Res. 256:106476. doi: 10.1016/j.fishres.2022.106476.
  • Nikolaus R, Schafft M, Maday A, Klefoth T, Wolter C, Arlinghaus R. 2021. Status of aquatic and riparian biodiversity in artificial lake ecosystems with and without management for recreational fisheries: implications for conservation. Aquatic Conserv: Mar Freshw Ecosyst. 31(1):153–172. doi: 10.1002/aqc.3481.
  • O’Toole AC, Hanson KC, Cooke SJ. 2009. The effect of shoreline recreational angling activities on aquatic and riparian habitat within an urban environment: implications for conservation and management. Environ Manage. 44(2):324–334. doi: 10.1007/s00267-009-9299-3.
  • Pearce JL, Mallory EC, Smokorowski KE. 2022. Downed wood dynamics in the riparian and littoral zone of small lakes in tolerant hardwood forests. Can J For Res. 52(5):751–768. doi: 10.1139/cjfr-2021-0245.
  • Pusey BJ, Arthington AH. 2003. Importance of the riparian zone to the conservation and management of freshwater fish: a review. Mar Freshwater Res. 54(1):1–16. doi: 10.1071/MF02041.
  • QGIS Development Team. 2019. QGIS Geographic Information System. Open Source Geospatial Foundation [cited 07 July 2023]. Retrieved from http://qgis.osgeo.org
  • R Core Team. (2019). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from www.r-project.org/
  • Radinger J, Matern S, Klefoth T, Wolter C, Feldhege F, Monk CM, Arlinghaus R. 2023. Ecosystem-based management outperforms species-focused stocking for enhancing fish populations. Science 379(6635):946–951. doi: 10.1126/science.adf0895.
  • Rey-Boissezon A, Joye D. 2012. A temporary gravel pit as a biodiversity hotspot for aquatic plants in the Alps. Arch Des Sci. 65:177–190.
  • Roth BM, Kaplan IC, Sass GG, Johnson PT, Marburg AE, Yannarell AC, Havlicek TD, Willis TV, Turner MG, Carpenter SR. 2007. Linking terrestrial and aquatic ecosystems: the role of woody habitat in lake food webs. Ecol Modell. 203(3-4):439–452. doi: 10.1016/j.ecolmodel.2006.12.005.
  • Santoul F, Figuerola J, Green AJ. 2004. Importance of gravel pits for the conservation of waterbirds in the Garonne river floodplain (southwest France). Biodivers Conserv. 13(6):1231–1243. doi: 10.1023/B:BIOC.0000018154.02096.4b.
  • Sass GG. 2009. Coarse woody debris in lakes and streams In: Likens GE, editor. Encyclopedia of Inland Waters. Oxford: Elsevier. Vol.1.
  • Sass GG, Carpenter SR, Gaeta JW, Kitchell JF, Ahrenstorff TD. 2012. Whole-lake addition of coarse woody habitat: response of fish populations. Aquat Sci. 74(2):255–266. doi: 10.1007/s00027-011-0219-2.
  • Schafft M, Wegner B, Meyer N, Wolter C, Arlinghaus R. 2021. Ecological impacts of water-based recreational activities on freshwater ecosystems: a global meta-analysis. Proc Biol Sci. 288(1959):20211623. doi: 10.1098/rspb.2021.1623.
  • Schindler DE, Scheuerell MD. 2002. Habitat coupling in lake ecosystems. Oikos. 98(2):177–189. doi: 10.1034/j.1600-0706.2002.980201.x.
  • Seelen LMS, Teurlincx S, Armstrong MR, Lürling M, van Donk E, de Senerpont Domis LN. 2022. Serving many masters at once: a framework for assessing ecosystem services delivered by quarry lakes. Inland Waters. 12(1):121–137. doi: 10.1080/20442041.2021.1944765.
  • Seelen LMS, Teurlincx S, Bruinsma J, Huijsmans TMF, van Donk E, Lürling M, de Senerpont Domis LN. 2021. The value of novel ecosystems: disclosing the ecological quality of quarry lakes. Sci Total Environ. 769:144294. doi: 10.1016/j.scitotenv.2020.144294.
  • Smokorowski KE, Pearce JL, Geiling WD, Pratt TC. 2021. Wood removals from lakes may not necessarily elicit fish population responses. North Am J Fish Manage. 41(1):142–157. doi: 10.1002/nafm.10543.
  • Smokorowski KE, Pratt TC. 2007. Effect of a change in physical structure and cover on fish and fish habitat in freshwater ecosystems – a review and meta-analysis. Environ Rev. 15(NA):15–41. doi: 10.1139/a06-007.
  • Smokorowski KE, Pratt TC, Cole WG, McEachern LJ, Mallory EC. 2006. Effects on periphyton and macroinvertebrates from removal of submerged wood in three Ontario lakes. Can J Fish Aquat Sci. 63(9):2038–2049. doi: 10.1139/f06-104.
  • Søndergaard M, Lauridsen TL, Johansson LS, Jeppesen E. 2018. Gravel pit lakes in Denmark: chemical and biological state. Sci Total Environ. 612:9–17. doi: 10.1016/j.scitotenv.2017.08.163.
  • Theis S, Ruppert JLW, Poesch MS. 2023. Coarse woody habitat use by local fish species and structural integrity of enhancements over time in a shallow northern boreal lake assessed in a Bayesian modelling approach. Ecol Solut Evid 4:e12200. doi: 10.1002/2688-8319.12200.
  • Umweltbundesamt. 2021. Angelfischerei und Nachhaltigkeit in Österreich. Impulse zur nachhaltigen angelfischereilichen Nutzung von Gewässern. Wien.
  • Venables WN, Ripley BD. 2002. Modern applied statistics with S. 4th ed. New York (NY): Springer.
  • Wilcoxon F. 1945. Individual comparisons by ranking methods. Biometrics Bulletin. 1(6):80–83. doi: 10.2307/3001968.
  • Zhao T, Grenouillet G, Pool T, Tudesque L, Cucherousset J. 2016. Environmental determinants of fish community structure in gravel pit lakes. Ecol Freshw Fish. 25(3):412–421. doi: 10.1111/eff.12222.