369
Views
19
CrossRef citations to date
0
Altmetric
Articles

Sulfonated Reduced Graphene Oxide (RGO-SO3H): As an Efficient Nanocatalyst for One-Pot Synthesis of 2-Amino-3-cyano-7-hydroxy-4H-chromenes Derivatives in Water

, &
Pages 51-65 | Received 14 Dec 2015, Accepted 27 Jan 2016, Published online: 04 Jan 2017

References

  • Chaudhari, R. V. “Heterogenized Homogeneous Catalysts for Fine Chemicals Production: Materials and Processes.” Platinum Met. Rev. 55 ( 2011): 180–185.
  • Zaera, F. “Nanostructured Materials for Applications in Heterogeneous Catalysis.” Chem. Soc. Rev. 42 ( 2013): 2746–62.
  • Chughtai, A. H., N. H. Ahmad, A. Younus, A. Laypkovc, and F., Verpoort. “Metal-Organic Frameworks: Versatile Heterogeneous Catalysts for Efficient Catalytic Organic Transformations.” Chem. Soc. Rev. 44 ( 2015): 6804–49.
  • Rodríguez-García, L., K. Hungerbühler, A. Baiker, and F. Meemken. “Enantioselection on Heterogeneous Noble Metal Catalyst: Proline-Induced Asymmetry in the Hydrogenation of Isophorone on Pd Catalyst.” J. Am. Chem. Soc. 137 ( 2015): 12121–30.
  • McMorna, P., and G. J. Hutchings. “Heterogeneous Enantioselective Catalysts: Strategies for the Immobilization of Homogeneous Catalysts.” Chem. Soc. Rev. 33 ( 2004): 108–22.
  • Sun, L. B., X. Q. Liua, and H. C. Zhou. “Design and Fabrication of Mesoporous Heterogeneous Basic Catalysts.” Chem. Soc. Rev. 44 ( 2015): 5092–147.
  • Kamaei, V., B. Karami, and S. Khodabakhshi. “Tungstate Sulfuric Acid as a Recyclable Catalyst for the Rapid and Green Synthesis of New and Known α-substituted β-naphthols.” Polycyclic Aromatic Comp. 34 ( 2014): 1–11.
  • Polshettiwar, V., and Asefa, T. “Nanocatalysis Synthesis and Applications” (Hoboken, NJ: John Wiley & Sons, Inc., 2013).
  • Fihri, A., M. Bouhrara, B. Nekoueishahraki, J. M. Basset, and V. Polshettiwar. “Nano-Catalysis for Suzuki Coupling Reaction.” Chem. Soc. Rev. 40 ( 2011): 5181–203.
  • Xie, X., Y. Li, Z. Q. Liu, M. Haruta, and W. Shen. “Low Temperature Oxidation of CO by Co3O4 Nanorods.” Nature 458 ( 2008): 746–9.
  • Machado, B. F., and P. Serp. “Graphene-Based Materials for Catalysis.” Catal. Sci. Technol. 2 ( 2012): 54–75.
  • Navalon, S., A. Dhakshinamoorthy, M. Alvaro, and H. Garcia. “Carbocatalysis by Graphene-Based Materials.” Chem. Rev. 114 ( 2014): 6179–212.
  • Haag, D., and Kung, H. H. “Metal Free Graphene Based Catalysts: A Review.” Top. Catal. 57 ( 2014): 762–73.
  • Hu, F., M., Patel, F. Luo, C. Flach, R. Mendelsohn, E. Garfunkel, H. He, and M. Szostak. “Graphene-Catalyzed Direct Friedel–Crafts Alkylation Reactions: Mechanism, Selectivity, and Synthetic Utility.” J. Am. Chem. Soc. 137 ( 2015): 14473–80.
  • Roy, B., S. Ghosh, P. Ghosh, and B. Basu. “Graphene oxide (GO) or Reduced Graphene Oxide (rGO): Efficient Catalysts for One-pot Metal-free Synthesis of Quinoxalines from 2-Nitroaniline.” Tetrahedron Lett. 56 ( 2015): 6762–7.
  • Albero, J., and H. Garcia. “Doped Graphenes in Catalysis.” J. Mol. Catal. A: Chem. 408 ( 2015): 296–309.
  • Oger, N., Y. F. Lin, C. Labrugère, E. L. Grognec, F. Rataboul, and F. X. Felpin. “Practical and Scalable Synthesis of Sulfonated Graphene.” Carbon 96 ( 2016): 342–50.
  • Naeimi, H., and M. Golestanzadeh. “Highly Sulfonated Graphene and Graphene Oxide Nanosheets as Heterogeneous Nanocatalysts in Green Synthesis of Bisphenolic Antioxidants under Solvent Free Conditions.” RSC Adv. 4 ( 2014): 56475–88.
  • Naeimi, H., and M. Golestanzadeh. “Microwave-assisted Synthesis of 6,6′-(aryl(alkyl)methylene)bis(2,4-dialkylphenol)antioxidants Catalyzed by Multi-sulfonated Reduced Graphene Oxide Nanosheets in Water.” New J. Chem. 39 ( 2015): 2697–710.
  • Zhang, L., T. Shi, S. Wu, and H. Zhou. “Sulfonated Graphene Oxide: The New and Effective Material for Synthesis of Polystyrene-based Nanocomposites.” Colloid Polym. Sci. 291 ( 2013): 2061–8.
  • Nicotera, I., C. Simari, L. Coppola, P. Zygouri, D. Gournis, S. Brutti, F. D. Minuto, A. S. Aricò, D. Sebastian, and V. Baglio. “Sulfonated Graphene Oxide Platelets in NafionNanocomposite Membrane: Advantages for Application in Direct Methanol Fuel Cells.” J. Phys. Chem. C 118 ( 2014): 24357–68.
  • Ellis, G. P., A. Weissberger, and E. C. Taylor (eds). The chemistryof Heterocyclic Compounds. Chromenes, Chromanes and Chromones,Chap XI, Alkylchromones, (New York: Wiley, 1997), 581–631.
  • Hafez, E. A. A., M. H. Elnagdi, A. G. A. Elagemey, and F. M. A. A. El-Taweel. “Nitriles in Heterocyclic Synthesis-Novel Synthesis of Benzo[c]-coumarin and of Benzo[c]pyrano[3,2-c]quinoline Derivatives.” Heterocycles 26 ( 1987): 903–7.
  • Poupaert, J., P. Carato, and E. Colacino. “2(3H)-Benzoxazolone and Bioisosters as “Privileged Scaffold” In the Design of Pharmacological Probes.” Curr. Med. Chem. 12 ( 2005): 877–85.
  • Triggle, D. J. “1,4-Dihydropyridines as Calcium Channel Ligands and Privileged Structures.” Cell Mol. Neurobiol. 23 ( 2003): 293–303.
  • Kidwai, M., S. Saxena, M. K. R. Khan, and S. S. Thukral. “Aqua Mediated Synthesis of Substituted 2-Amino-4H-Chromenes and in Vitro Study as Antibacterial Agents.” Bioorg. Med. Chem. Lett. 15 ( 2005): 4295–8.
  • Mohr, S. J., M. A., Chirigos, F. S. Fuhrman, and J. W. Pryor. “Pyran Copolymer as an Effective Adjuvant to Chemotherapy against a Murine Leukemia and Solid Tumor.” Cancer Res. 35 ( 1975): 3750–4.
  • Gao, M., K. D. Miller, G. D. Hutchins, and Q. H. Zheng. “Synthesis of Carbon-11-labeled 4-aryl-4H-chromens as New PET Agents for Imaging of Apoptosis in Cancer.” Appl. Radiat. Is. 68 ( 2010): 110–6.
  • Gorea, R. P., and A. P. Rajput. “A Review on Recent Progress in Multicomponent Reactions of Pyrimidine Synthesis.” Drug Invent. Today 5 ( 2013): 148–52.
  • Nourisefat, M., F. Panahi, and A. Khalafi-Nezhad. “Carbohydrates as a Reagent in Multicomponent Reactions: One-pot Access to a New Library of Hydrophilic Substituted Pyrimidine-Fused Heterocycles.” Org. Biomol. Chem. 12 ( 2014): 9419–26.
  • Jin, T. S., J. C. Xiao, S. J. Wang, and T. S. Li. “Ultrasound-Assisted Synthesis of 2-Amino-2-chromeneswith Cetyltrimethylammonium Bromide in Aqueous Media.” Ultrason. Sonochem. 11 ( 2004): 393–7.
  • Ballini, R., G. Bosica, M. L. Conforti, R. Maggi, A. Mazzacanni, P. Righi, and G. Sartori. “Three-component Process for the Synthesis of 2-Amino-2-chrome in Aqueous media.” Tetrahedron 57 ( 2001): 1395–8.
  • Ballini, R., F. Bigi, M. L., Conforti. “Multicomponent Reactions Under Clay Catalysis.” Catal. Today 60 ( 2000): 305–9.
  • Wang, X., D. Shi, and S. Tu. “Synthesis of 2-Aminochromene Derivatives Catalyzed by KF/Al2O3.” Synthetic Commun. 34 ( 2004): 509–14.
  • Kumar, B. S., N. Srinivasulu, R. U., dupi, B. Rajitha, Y. T. Reddy, P. N. Reddy, and P. Kumar. “Efficient Synthesis of Benzo[g]-and Benzo[h]chromene Derivatives by One-pot Three-component Condensation of Aromatic Aldehydes with Active Methylene Compounds and Naphthols.” Russian J. Org. Chem. 42 ( 2006): 1813–5.
  • Maggi, R., R. Ballini, and G. Sartori. “Basic Alumina Catalyzed Synthesis of Substituted 2-Amino-2-chromenes via Three-component Reaction.” Tetrahedron Lett. 45 ( 2004): 2297–9.
  • Kumar, D., V. B. Reddy, B. K. Mishra, G. R. Rana, N. Mallikarjuna, R. Nadagouda, and S. Varma. “Nanosized Magnesium Oxide as Catalyst for the Rapid and Green Synthesis of Substituted 2-Amino-2-chromenes.” Tetrahedron 63 ( 2007): 3093–7.
  • Heravi, M. M., K. Bakhtiari, V. Zadsirjan, F. F. Bamoharram, and M. O. Heravi. “Aqua Mediated Synthesis of Substituted 2-Amino-4H-chromenes Catalyzed by Green and Reusable Preyssler Heteropoly Acid.” Bioorg. Med. Chem. Lett. 17 ( 2007): 4262–5.
  • Gong, K., H. L. Wang, Z. L. F. Liu. “Basic Ionic Liquid as Catalyst for the Rapid and Green Synthesis of Substituted 2-Amino-2H-chromenes in Aqueous media.” Catal. Commun. 9 ( 2008): 650–3.
  • Ren, Y. M., and C. Cai. “Convenient and Efficient Method for Synthesis of Substituted 2-Amino-2-chromenes Using Catalytic Amount of Iodine and K2CO3 in Aqueous Medium.” Catal. Commun. 9 ( 2008): 1017–20.
  • Khaksar, S., A. Rouhollahpour, and S. M. Talesh. “A Facile and Efficient Synthesis of 2-Amino-3-cyano-4H-chromenes andTetrahydrobenzo[b]pyrans using 2,2,2-Trifluoroethanol as a Metal-Free and Reusable Medium.” J. Fluor. Chem. 141 ( 2012): 11–5.
  • Kundu, S. K., J. Mondal, and A. Bhaumik. “Tungstic Acid Functionalized Mesoporous SBA-15: A Novel Heterogeneous Catalyst for Facile One-pot Synthesis of 2-Amino-4H-chromenes in Aqueous Medium.” Dalton Trans. 42 ( 2013): 10515–24.
  • Khalafi-Nezhad, A., H. O. Foroughi, M. M. Doroodmand, and F. Panahi. “Silica Boron-sulfuric acid Nanoparticles (SBSANs): Preparation, Characterization and Their Catalytic Application in the Ritter Reaction for the Synthesis of Amide Derivatives.” J. Mat. Chem. 21 ( 2011): 12842–51.
  • Raghuvanshi, D. S., and K. N., Singh. “An Expeditious Synthesis of Novel Pyranopyridine Derivatives Involving Chromenes under Controlled Microwave Irradiation.” ARKIVOC X ( 2010): 305–17.
  • Mobinikhaledi, A., H. Moghanian, and F. Sasani. “Microwave-assisted One-pot Synthesis of 2-Amino-2-chromenes using Piperazine as a Catalyst under Solvent-free Conditions.” Syn. React. Inorg. Met.-Org. Nano-Met. Chem. 41 ( 2011): 262–5.
  • Safari, J., Z. Zarnegar, and M. Heydarian. “Practical, Ecofriendly, and Highly Efficient Synthesis of 2-Amino-4H-chromenes using Nanocrystalline MgO as a Reusable Heterogeneous Catalyst in Aqueous Media.” J. Taibah Unive. Sci. 7 ( 2013): 17.
  • Nitin, K., K. Sushil, G. Himanshu, and P. K. Sharma. “3-Hydroxy-2- (Substituted phenyl)-4H-Chromen-4-One Derivatives-Synthesis, Spectral Characterization and Pharmacological Screening.” World Res. J. Biochem. 1 ( 2012): 1–5.
  • Bhat, M. A., N. Siddiqui, and S. A. Khan. “Synthesis of Novel 3-(4-acetyl-5H/methyl-5-substituted Phenyl-4,5-dihydro-1,3,4-Oxadiazol-2-yl)-2H-Chromen-2-ones as Potential Anticonvulsant Agents.” Acta Pol. Pharm. 65 ( 2008): 235–9.
  • Nicolaou, K. C., J. A. Pfefferkorn, A. J. Roecjker, G. Q. Cao, S. Barluenga, and H. J. Mitchell. “Natural Product-like Combinatorial Libraries Based on Privileged Structures. 1. General Principles and Solid-Phase Synthesis of Benzopyrans.” J. Am. Chem. Soc. 122 ( 2000): 9939–53.
  • Khairy, A. M., M. A. Mohsen, A. M. Yahia, W. M. Basyouni, and Y. A. Samir. “Novel 4(3H)-Quinazolinone Containing Biologically Active Thiazole, Pyrazole, 1,3-dithiazole, Pyridine, Chromene, Pyrazolopyrimidine and Pyranochromene of Expected Biological Activity.” World J. Chem. 4 ( 2009): 161–70.
  • Brahmachari, G., and B. Banerjee. “Facile and One-Pot Access to Diverse and Densely Functionalized 2-Amino-3-cyano-4H-pyrans and Pyran-Annulated Heterocyclic Scaffolds via an Eco-Friendly Multicomponent Reaction at Room Temperature Using Urea as a Novel Organo-Catalyst.” ACS Sust. Chem. Eng. 2 ( 2014): 411–22.
  • Hummers, W. S., and R. E. Offeman. “Preparation of Graphitic Oxide.” J. Am. Chem. Soc. 80 ( 1958): 1339.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.