149
Views
3
CrossRef citations to date
0
Altmetric
Articles

Cooperative Activation in the Synthesis of Flavanone Antioxidants Using a Simple and Highly Efficient Magnetically Recoverable Nano-Cu-CoFe2O4 Catalyst

, &
Pages 464-478 | Received 14 Jan 2016, Accepted 26 Oct 2016, Published online: 27 Dec 2016

References

  • Zhou, Z., P. Zhao, W. Huang, and G. Yang. “A Selective Transformation of Flavanones to 3-Bromoflavones and Flavones Under Microwave Irradiation.” Adv. Synth. Catalysis 348 ( 2006): 63–7.
  • Paredes, A., M. Alzuru, J. Mendez, and M. Rodriguez-Ortega. “Anti-Sindbis Activity of Flavanones Hesperetin and Naringenin.” Biol. Pharmaceutical Bull. 26 ( 2003): 108–9.
  • Maiti, A. M. Cuendet, V. L. Croy, D. C. Endringer, J. M. Pezzuto, and M. Cushman. “Synthesis and Biological Evaluation of (±)-Abyssinone II and Its Analogues as Aromatase Inhibitors for Chemoprevention of Breast Cancer.” J. Med. Chem. 50 ( 2007): 2799–806.
  • Roelens, F. N. Heldring, W. Dhooge, M. Bengtsson, F. Comhaire, J.-A. Gustafsson, E. Treuter, and D. D. Keukeleire. “Subtle Side-Chain Modifications of the Hop Phytoestrogen 8-Prenylnaringenin Result in Distinct Agonist/Antagonist Activity Profiles for Estrogen Receptors α and β.” J. Med. Chem. 49 ( 2006): 7357–65.
  • Li, W.-D. Z. and B.-C. Ma. “A Simple Biomimetic Synthesis of dl-Chamaejasmine, a Unique 3,3‘-Biflavanone.” Org. Lett. 7 ( 2005): 271–4.
  • Jez, J. M. and J. P. Noel. “Reaction Mechanism of Chalcone Isomerase: pH Dependence, Diffusion Control, and Product Binding Differences.” J. Biol. Chem. 277 ( 2002): 1361–9.
  • Kumar, A., S. Sharma, V. D. Tripathi, and S. Srivastava. “Synthesis of chalcones and flavanones using Julia–Kocienski olefination.” Tetrahedron 66 ( 2010): 9445–49.
  • Brennan, C. M., I. Hunt, T. C. Jarvis, C. D. Johnson, and P. D. Mcdonnel. “Stereoelectronic Effects in Ring Closure Reactions: the 2′-Hydroxychalcone – Flavanone Equilibrium, and Related Systems.” Can. J. Chem. 68 ( 1990): 1780–5.
  • Saravanamurugan, S., M. Palanichamy, B. Arabindoo, and V. Murugesan. “Liquid Phase Reaction of 2′-Hydroxyacetophenone and Benzaldehyde Over ZSM-5 Catalysts.” J. Mol. Catalysis A: Chem. 218 ( 2004): 101–6.
  • Moorthy, N. S. H. N., R. J. Singh, H. P. Singh, and S. D. Gupta. “Synthesis, Biological Evaluation and In Silico Metabolic and Toxicity Prediction of Some Flavanone Derivatives.” Chem. Pharmaceutical Bull. 54 ( 2006): 1384–90.
  • Kulkarni, P., P. Wagh, and P. Zubaidha. “An Improved and Eco-Friendly Method for the Synthesis of Flavanone by the Cyclization of 2′-Hydroxy Chalcone using Methane Sulphonic Acid as Catalyst.” Chem. J. 2 ( 2012): 106–10.
  • Paquette, L. A. 1995. Encyclopedia of Reagents for Organic Synthesis. (New York, NY: John Wiley & Sons, 1995), 4172.
  • Tanka, K. and T. Sugino. “Efficient Conversion of 2′-Hydroxychalcones into Flavanones and Flavanols in a Water Suspension Medium.” Green Chem. 3 ( 2001): 133–4.
  • Saravanamurugan, S., M. Palanichamy, B. Arabindoo and V. Murugesan. “Solvent Free Synthesis of Chalcone and Flavanone Over Zinc Oxide Supported Metal Oxide Catalysts.” Catalysis Commun. 6 ( 2005): 399–403.
  • Cave, G. W. V., C. L. Raston and J. L. Scott. “Recent Advances in Solventless Organic Reactions: Towards Benign Synthesis with Remarkable Versatility.” Chem. Commun. ( 2001): 2159–69.
  • Tanaka, K. and F. Toda. “Solvent-Free Organic Synthesis.” Chem. Rev. 100 ( 2000): 1025–74.
  • Welton, T. “Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis.” Chem. Rev. 99 ( 1999): 2071–84.
  • Bhosale, D. G. and P. S. Kulkarni. “Ferric Sulphate Solid Acid Catalyst for Cyclization of 2′-Hydroxychalcone to Flavanone under Microwave Condition.” Iran. J. Org. Chem. 5 ( 2013): 1061–64.
  • Makrandi, J. K. and S. Bala. “Potassium Ferricyanide Mediated Cyclisation of 2′-Hydroxychalcones to Flavanones Using Phase Transfer Catalysis.” Synth. Commun. 30 ( 2000): 3555–8.
  • Ali, S. M., J. Iqbal and M. Ilyas. “NiCl2-Zn-KI-Catalyzed Transformation of Chalcones. I: Synthesis of 5-Hydroxyflavanones.” J. Chem. Res. 8 ( 1984): 236–40.
  • Tundo, P. and P. T. Anastas. 2000. Green Chemistry: Challenging Perspectives. (Oxford, UK: Oxford University Press, 2000).
  • Naseem, A., N. K. Konduru, Praveen, A. Kumar and Kamaluddin. “Silica Supported-Double Metal Cyanides (DMCs): A Green and Highly Efficient Catalytic Protocol for Isomerisation of 2′-Hydroxychalcones to Flavanones.” J. Mol. Catalysis A: Chem. 373 ( 2013): 135–41.
  • Rostamizadeh, S., N. Zekri, and L. Tahershamsi. “Nanosilica-Supported Dual Acidic Ionic Liquid as a Heterogeneous and Reusable Catalyst for the Synthesis of Flavanones Under Solvent-Free Conditions.” Chem. Heterocyclic Compd. 51 ( 2015): 526–30.
  • Sakirolla, R., M. Yaeghoobi, and N. Abd. Rahman. “Synthesis of Flavanones, Azaflavanones, and Thioflavanones Catalyzed by PMA-SiO2 as a Mild, Efficient, and Reusable Catalyst.” Mon.hefte für Chemie - Chem. Mon. 143 ( 2012):797–800.
  • Rajesh, U. C., S. Manohar, and D. S. Rawat. “Hydromagnesite as an Efficient Recyclable Heterogeneous Solid Base Catalyst for the Synthesis of Flavanones, Flavonols and 1,4-Dihydropyridines in Water.” Adv. Synth. Catalysis 355 ( 2013): 3170–8.
  • Vashishtha, M., M. Mishra, and D. O. Shah. “Study on Catalytic Property of NaOH-Cationic Surfactant Solutions for Efficient, Green and Selective Synthesis of Flavanone.” J. Mol. Liq. 210 ( 2015): 151–9.
  • Eshghi, H., M. Rahimizadeh, and S. M. Mousavi. “Fe(HSO4)3/SiO2: an Efficient and Heterogeneous Catalyst for one-pot Synthesis of 2-aryl-Chromene-4-ones (Flavanones).” Nat. Prod. Res. 28 ( 2014): 438–43.
  • Polshettiwar, V., R. Luque, A. Fihri, H. Zhu, M. Bouhrara, and J. M. Basset. “Magnetically Recoverable Nanocatalysts.” Chem. Rev. 111 ( 2011): 3036–75.
  • Karimi, B., F. Mansouri, and H. M. Mirzaei. “Recent Applications of Magnetically Recoverable Nanocatalysts in C-C and C-X Coupling Reactions.” ChemCatChem 7 ( 2015): 1736–89.
  • Hudson, R., Y. Feng, R. S. Varma, and A. Moores. “Bare Magnetic Nanoparticles: Sustainable Synthesis and Applications in Catalytic Organic Transformations.” Green Chem. 16 ( 2014): 4493–505.
  • Gohain, M., V. Kumar, J. H. van Tonder, H. C. Swart, O. M. Ntwaeaborwa, and B. C. B. Bezuidenhoudt. “Nano CuFe2O4: an Efficient, Magnetically Separable Catalyst for Transesterification of β-Ketoesters.” RSC Adv. 5 ( 2015): 18972–6.
  • Dandia, A., A. K. Jain, and S. Sharma. “CuFe2O4 Nanoparticles as a Highly Efficient and Magnetically Recoverable Catalyst for the Synthesis of Medicinally Privileged Spiropyrimidine Scaffolds.” RSC Adv. 3 ( 2013): 2924–34.
  • Parella, R., A. Naveen Kumar, and S. A. Babu. “Catalytic Friedel–Crafts Acylation: Magnetic Nanopowder CuFe2O4 as an Efficient and Magnetically Separable Catalyst.” Tetrahedron Lett. 54 ( 2013): 1738–42.
  • Tasca, J. E., A. Ponzinibbio, G. Diaz, R. D. Bravo, A. Lavat, and M. G. Gonzalez. “CuFe2O4 Nanoparticles: A Magnetically Recoverable Catalyst for Selective Deacetylation of Carbohydrate Derivatives.” Top. Catalysis 53 ( 2010): 1087–90.
  • Gholinejad, M., B. Karimi, and F. Mansouri. “Synthesis and Characterization of Magnetic Copper Ferrite Nanoparticles and their Catalytic Performance in One-pot Odorless Carbon-Sulfur Bond Formation Reactions.” J. Mol. Catalysis A: Chem. 386 ( 2014): 20–7.
  • Rajput, J. K. and G. Kaur. “Synthesis and Applications of CoFe2O4 Nanoparticles for Multicomponent Reactions.” Catalysis Sci. Technol. 4 ( 2014): 142–51.
  • Brahmachari, G., S. Laskar, and P. Barik. “Magnetically Separable MnFe2O4 Nano-Material: an Efficient and Reusable Heterogeneous Catalyst for the Synthesis of 2-Substituted Benzimidazoles and the Extended Synthesis of Quinoxalines at Room Temperature Under Aerobic Conditions.” RSC Adv. 3 ( 2013): 14245–53.
  • Moghaddam, F. M., G. Tavakoli, A. Moafi, V. Saberi and H. R. Rezvani. “C-N Bond Formation Using Highly Effective and Reusable Nickel Ferrite Nanoparticles in Water.” ChemCatChem 6 ( 2014): 3474–81.
  • Khazaei, A., A. Ranjbaran, F. Abbasi, M. Khazaei, and A. R. Moosavi-Zare. “Synthesis, Characterization and Application of ZnFe2O4 Nanoparticles as a Heterogeneous Ditopic Catalyst for the Synthesis of Pyrano[2,3-d] Pyrimidines.” RSC Adv. 5 ( 2015): 13643–7.
  • Xia, A., S. Liu, C. Jin, L. Chen, and Y. Lv. “Hydrothermal Mg1−xZnxFe2O4 Spinel Ferrites: Phase Formation and Mechanism of Saturation Magnetization.” Mater. Lett. 105 ( 2013): 199–201.
  • Pu, Y., X. Tao, J. Zhai, and J.-F. Chen. “Hydrothermal Synthesis and Magnetic Properties of Co0.2Cu0.03Fe2.77O4 Nanoparticles.” Mater. Res. Bull. 45 ( 2010): 616–20.
  • Ounnunkad, K. and S. Phanichphant. “Cellulose-Precursor Synthesis of Nanocrystalline Co0.5Cu0.5Fe2O4 Spinel Ferrites.” Mater. Res. Bull. 47 ( 2012): 473–7.
  • Briceno, S., H. D. Castillo, V. Sagredo, W. Bramer-Escamilla, and P. Silva. “Structural, Catalytic and Magnetic Properties of Cu1−XCoXFe2O4.” Appl. Surf. Sci. 263 ( 2012): 100–3.
  • Mathew, T., M. Vijayaraj, S. Pai, B. B. Tope, S. G. Hegde, B. S. Rao, and C. S. Gopinath. “A Mechanistic Approach to Phenol Methylation on Cu1−xCoxFe2O4: FTIR Study.” J. Catalysis 227 ( 2004): 175–85.
  • Fareghi-Alamdari, R., Z. Hosseinabadi, and M. Farhadi Khouzani. “Synthesis, Characterization and Investigation of Catalytic Activity of Cu 1−x CoxFe2O4 Nanocatalysts in t-Butylation of p-Cresol.” J. Chem. Sci. 124 ( 2012): 827–34.
  • Moorthy, N. S. H. N., R. J. Singh, H. P. Singh, and S. D. Gupta. “Synthesis, Biological Evaluation and In Silico Metabolic and Toxicity Prediction of Some Flavanone Derivatives.” Chem. Pharmaceutical Bull. 54 ( 2006): 1384–90.
  • Cabera, M., M. Simones, G. Falchi, M. L. Lavaggi, O. E. Piro, E. E. Castellano, A. Vidal, A. Azqueta, A. Monge, A. López de Ceráin, G. Sagrera, G. Seoane, H. Cerecetto, and M. González. “Synthetic Chalcones, Flavanones, and Flavones as Antitumoral Agents: Biological Evaluation and Structure–Activity Relationships.” BioorganicMed. Chem. 15 ( 2007): 3356–67.
  • Albogami, A. S., U. Karama, A. A. Mousa, M. Khan, S. A. Al-Mazroa, and H. Z. Alkhathlan. “Simple and Efficient One Step Synthesis of Functionalized Flavanones and Chalcones.” Orient. J. Chem. 28 ( 2012): 619–26.
  • Fareghi-Alamdari, R., F. Zandi, and M. H. Keshavarz. “Copper–Cobalt Synergy in Cu1-xCoxFe2O4 Spinel Ferrite as a Highly Efficient and Regioselective Nanocatalyst for the Synthesis of 2,4-Dinitrotoluene.” RSC Adv. 5 ( 2015): 71911–21.
  • Ounnunkad, K. and S. Phanichphant. “Cellulose-Precursor Synthesis of Nanocrystalline Co0.5Cu0.5Fe2O4 Spinel Ferrites.” Mater. Res. Bull. 47 ( 2012): 473–7.
  • Chen, P. Y., T. P. Wang, M. Y. Chiang, K. S. Huang, Ch. Ch. Tzeng, Y. L. Chen, and E. Ch. Wang. “Environmentally Benign Syntheses of Flavanones.” Tetrahedron 67 ( 2011): 4155–60.
  • Bhosale, D. G. and P. S. Kulkarni. “Ferric Sulphate Solid Acid Catalyst for Cyclization of 2′-Hydroxychalcone to Flavanone Under Microwave Condition.” Iran. J. Org. Chem. 5 ( 2013): 1061–64.
  • Mondal, R., A. Das Gupta, and A. K. Mallik. “Synthesis of Flavanones by use of Anhydrous Potassium Carbonate as an Inexpensive, Safe, and Efficient Basic Catalyst.” Tetrahedron Lett. 52 ( 2011): 5020–4.
  • Kavala, V., Ch. Lin, Ch.-W. Kuo, H. Fang, and Ch.-F. Yao. “Iodine Catalyzed One-Pot Synthesis of Flavanone and Tetrahydropyrimidine Derivatives Via Mannich Type Reaction.” Tetrahedron 68 ( 2012): 1321–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.