320
Views
5
CrossRef citations to date
0
Altmetric
Articles

Interaction of Chrysene, Dibenzo[a,h]anthracene and Dibenzo[a,h]pyrene with Graphene Models of Different Sizes: Insights from DFT Molecular Electrical Properties

, , , & ORCID Icon
Pages 99-110 | Received 12 Sep 2016, Accepted 28 Nov 2016, Published online: 03 Jan 2017

References

  • Zazo, J., J. Casas, A. Mohedano, and J. Rodríguez, “Catalytic wet peroxide oxidation of phenol with a fe/active carbon catalyst.” Appl. Catal. B: Environ. 65 (3–4) (2006): 261–8.
  • Ruiz, V., R. Santamaría, M. Granda, and C. Blanco, “Long-term cycling of carbon-based supercapacitors in aqueous media.” Electroch. Acta. 54 (19) (2009): 4481–6.
  • Alexander, J., D. Benford, A. Cockburn, J. Cravedi, E. Dogliotti, A. D. Domenico, M. Ferna_ndez-Cruz, J. Fink-Gremmels, P. Furst, C. Galli, P. Grandjean, J. Gzyl, G. Heinemeyer, N. Johansson, A. Mutti, J. Schlatter, R. van Leeuwen, C. V. Peteghem, and P. Verger, “Polycyclic aromatic hydrocarbons in food: Scientific opinion of the EFSA panel on contaminants in the food chain.” EFSA J. 724 (2008): 1–114.
  • van Noort, P. C., “Gibbs free energies for dual Langmuir-like adsorption onto hard carbon materials in sediment and soils.” Environ. Toxicol. Chem. 25 (12) (2006): 3125–32.
  • Apul, O. G., Q. Wang, Y. Zhou, and T. Karanfil, “Adsorption of aromatic organic contaminants by graphene nanosheets: Comparison with carbon nanotubes and activated carbon.” Water Res. 47 (4) (2013): 1648–54.
  • Yang, K., L. Zhu, and B. Xing, “Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials.” Environ. Sci. Technol. 40 (6) (2006): 1855–61.
  • Zhao, J., Z. Wang, Q. Zhao, and B. Xing, “Adsorption of phenanthrene on multilayer graphene as affected by surfactant and exfoliation.” Environ. Sci. Technol. 48 (1) (2014): 331–9.
  • Chahine, R. and P. Benard. “Performance Study of Hydrogen Adsorption Storage System,” in Energy Carriers And Conversion Systems With Emphasis On Hydrogen, vol. 23, ed. T. Ohta (Oxford: Pergamon Press, 1998).
  • M. Lamari, A. Aoufi, and P. Malbrunot, eds., “Storage of Hydrogen by Adsorption at Room Temperature,” in Hydrogen Energy Progress XII, Vol. 22, pp. 1307–16, 1997.
  • Chigo Anota, E., A. Torres Soto, and G. H. Cocoletzi, “Studies of graphene-chitosan interactions and analysis of the bioadsorption of glucose and cholesterol.” Appl. Nanosci. 4 (8) (2013): 911–8.
  • Luo, Y.-B., J.-S. Cheng, Q. Ma, Y.-Q. Feng, and J.-H. Li, “Graphene-polymer composite: Extraction of polycyclic aromatic hydrocarbons from water samples by stir rod sorptive extraction.” Anal. Methods 3 (2011): 92–98.
  • Ye, N. and P. Shi, “Applications of graphene-based materials in solid-phase extraction and solid-phase microextraction.” Separ. Purif. Rev. 44 (3) (2015): 183–198.
  • Chakarova, S. D. and E. Schroder, “van der Waals interactions of polycyclic aromatic hydrocarbon dimers.” J. Chemi.l Phy. 122 (5) (2005): 054102.
  • Zhao, Y. and D. G. Truhlar, “A prototype for graphene material simulation: Structures and interaction potentials of coronene dimers.” J. Phys. Chem. C, 112 (11) (2008): 4061–7.
  • Chakarova-kack, S. D., A. Vojvodic, J. Kleis, P. Hyldgaard, and E. Schroder, “Binding of polycyclic aromatic hydrocarbons and graphene dimers in density functional theory.” New J. Phys. 12 (2010): 013017.
  • Yadav, A. and P. Mishra, “Dimers and trimers of polycyclic aromatic hydrocarbons as models of graphene bilayers and trilayers: Enhanced electron density at the edges.” Mol. Phys. 112 (1) (2014): 88–96.
  • Chakarova-Kack, S. D., E. Schroder, B. I. Lundqvist, and D. C. Langreth, “Application of van der Waals density functional to an extended system: Adsorption of benzene and naphthalene on graphite.” Phys. Rev. Letts. 96 (Apr 2006): 146107.
  • Bjork, J., F. Hanke, C.-A. Palma, P. Samori, M. Cecchini, and M. Persson, “Adsorption of aromatic and anti-aromatic systems on graphene through stacking,” J. Phys. Chem. Letts. 1, (23) (2010): 3407–12.
  • Li, Y., X. Tu, H. Wang, S. Sanvito, and S. Hou, “First-principles investigation on the electronic efficiency and binding energy of the contacts formed by graphene and poly-aromatic hydrocarbon anchoring groups.” J. Chem. Phys. 142 (16) (2015): 164701.
  • Wang, W., Y. Zhang, and Y.-B. Wang, “Noncovalent π-π interaction between graphene and aromatic molecule: Structure, energy, and nature,” J. Chem. Phys. 140 (9) (2014): 094302.
  • Muñoz-Castro, A., T. Gómez, D. M. Carey, S. Miranda-Rojas, F. Mendizabal, J. H. Zagal, and R. Arratia-Pérez, “Surface on surface. Survey of the monolayer gold-graphene interaction from Au12 and PAH via relativistic DFT calculations.” J. Phys. Chem. C 120, (13) (2016): 7358–64.
  • Castellano, O., R. Gimón, and H. Soscún, “Theoretical study of the σ-π and π-π interactions in heteroaromatic monocyclic molecular complexes of benzene, pyridine, and thiophene dimers: Implications on the resin-asphaltene stability in crude oil.” Energy Fuels 25, (6) (2011): 2526–41.
  • Castellano, O., R. Gimon, C. Canelon, Y. Aray, and H. Soscun, “Molecular interactions between Orinoco belt resins.” Energy Fuels 26 (5) (2012): 2711–20.
  • Araujo, V., M. Peñaranda, O. Castellano, and H. Soscún, “Propiedades estructurales, energéticas y electrónicas del complejo molecular formado por la interacción entre benceno y grafeno extendido: Investigación basada en la teoría del funcional de la densidad DFT.” Ciencia 20 (Número Especial) (2012): 128–36.
  • Hernández Rosas, J. J., R. E. Ramírez Gutiérrez, A. Escobedo-Morales, and E. Chigo Anota, “First principles calculations of the electronic and chemical properties of graphene, graphane, and graphene oxide.” J. Mol. Model. 17 (5) (2010): 1133–9.
  • Nanorex, NanoEngineer-1. http://www.nanoengineer-1.com, 2004. (accessed March 25, 2004).
  • Vincent, M. A. and I. H. Hillier, “Accurate prediction of adsorption energies on graphene, using a dispersion-corrected semiempirical method including solvation.” J. Chem. Inform. Model. 54 (8) (2014): 2255–60.
  • Gordeev, E. G., M. V. Polynski, and V. P. Ananikov, “Fast and accurate computational modeling of adsorption on graphene: A dispersion interaction challenge.” Phys. Chem. Chem. Phys. 15 (2013): 18815–21.
  • Conti, S. and M. Cecchini, “Accurate and efficient calculation of the desorption energy of small molecules from graphene.” J. Phys. Chem. C 119 (4) (2015): 1867–79.
  • Stewart, J., “Mopac2012.” http://OpenMOPAC.net, 2012. (accessed January 2014).
  • Grimme, S., S. Ehrlich, and L. Goerigk, “Effect of the damping function in dispersion corrected density functional theory.” J. Comput. Chem. 32 (7) (2011): 1456–65.
  • Hohenberg, P. and W. Kohn, “Inhomogeneous electron gas.” Phys. Rev. 136 (Nov 1964): B864–71.
  • Feller, D. and E. R. Davidson, “Basis Sets for Ab Initio Molecular Orbital Calculations and Intermolecular Interactions,” in Reviews in Computational Chemistry, vol. 1, eds. Lipkowitz K. B. and D. B. Boyd (New York: John Wiley & Sons, Inc., 2007).
  • Hamprecht, F. A., A. J. Cohen, D. J. Tozer, and N. C. Handy, “Development and assessment of new exchange-correlation functionals.” J. Chem.l Phys. 109, (15) (1998): 6264–71.
  • Boese, A. D., N. L. Doltsinis, N. C. Handy, and M. Sprik, “New generalized gradient approximation functionals.” J. Chem. Phy. 112 (4) (2000): 1670–8.
  • Boese, A. D., and N. C. Handy, “A new parametrization of exchange-correlation generalized gradient approximation functionals.” J. Chem. Phys. 114 (13) (2001): 5497–503.
  • Perdew, J. P. and K. Burke, “Comparison shopping for a gradient corrected density functional.” Int. J. Quantum Chem. 57, (3) (1996): 309–19.
  • Grimme, S., “Accurate description of van der Waals complexes by density functional theory including empirical corrections.” J. Comput. Chem. 25 (12) (2004): 1463–73.
  • Delley, B., “An all-electron numerical method for solving the local density functional for polyatomic molecules.” J. Chem. Phys. 92 (1) (1990): 508–17.
  • Delley, B., “Analytic energy derivatives in the numerical local density-functional approach.” J. Chem. Phys. 94 (11) (1991): 7245–50.
  • Delley, B., “From molecules to solids with the DMol3 approach.” J. Chem. Phys. 113 (18) (2000): 7756–64.
  • Inada, Y., and H. Orita, “Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: Evidence of small basis set superposition error compared to Gaussian basis sets.” J. Comput. Chem. 29 (2) (2008): 225–32.
  • Hou, X.-J., H. Li, and P. He, “Theoretical investigation for adsorption of CO2 and CO on mil-101 compounds with unsaturated metal sites.” Comput. Theor. Chem. 1055 (2015): 8–14.
  • Rojas, L., F. Ruette, A. Peraza, O. Castellano, and H. Soscún, “Relationship between unbranched alkane dimer interaction energies using different theoretical methods and correlations with thermodynamic properties.” Chem. Phys. Letts. 625 (2015): 20–5.
  • Salih, Z. I., Y.-J. Guo, J.-J. Zheng, and X. Zhao, “Effect of modified linkers of mof-5 on enhancing interaction energies: A theoretical study.” Comput. Theor. Chem. 1058 (2015): 28–33.
  • Najafi Chermahini, A., A. Teimouri, and H. Farrokhpour, “A DFT-D study on the interaction between lactic acid and single-wall carbon nanotubes.” RSC Adv. 5 (2015): 97724–33.
  • Kurtz, H. A., J. J. P. Stewart, and K. M. Dieter, “Calculation of the nonlinear optical properties of molecules.” J. Comput. Chem. 11 (1) (1990): 82–7.
  • Kamada, K., M. Ueda, H. Nagao, K. Tawa, T. Sugino, Y. Shmizu, and K. Ohta, “Molecular design for organic nonlinear optics: Polarizability and hyperpolarizabilities of furan homologues investigated by ab initio molecular orbital method.” J. Phys. Chem. A 104 (20) (2000): 4723–34.
  • Lehn, J. M., “From Molecular to Supramolecular Chemistry,” in Supramolecular Chemistry: Concepts and Perspectives, vol. 1, ed. Lehn J. M. (Weinheim: Wiley-VCH Verlag GmbH & Co., 1995).
  • Wang, Z., and R. W. Scharstein, “Electrostatics of graphene: Charge distribution and capacitance.” Chem. Phys. Lett. 489 (4–6) (2010): 229–36.
  • Schmidt, W., K. Seino, M. Preuss, A. Hermann, F. Ortmann, and F. Bechstedt, “Organic molecule adsorption on solid surfaces: chemical bonding, mutual polarisation and dispersion interaction.” Appl. Phys. A 85, (4) (2006): 387–97.
  • Ershova, O. V., T. C. Lillestolen, and E. Bichoutskaia, “Study of polycyclic aromatic hydrocarbons adsorbed on graphene using density functional theory with empirical dispersion correction.” Phys. Chem. Chemi. Phys. 12 (2010): 6483–91.
  • Dion, M., H. Rydberg, E. Schroder, D. C. Langreth, and B. I. Lundqvist, “van der Waals density functional for general geometries.” Phys. Rev. Lett. 92 (Jun 2004): 246401.
  • Thonhauser, T., V. R. Cooper, S. Li, A. Puzder, P. Hyldgaard, and D. C. Langreth, “Van der Waals density functional: Self consistent potential and the nature of the van der Waals bond.” Phys. Rev. B 76 (Sep 2007): 125112.
  • Langreth, D. C., B. I. Lundqvist, S. D. Chakarova-Kck, V. R. Cooper, M. Dion, P. Hyldgaard, A. Kelkkanen, J. Kleis, L. Li, P. G. Moses, E. Murray, A. Puzder, H. Rydberg, E. Schrder, and T. Thonhauser, “A density functional for sparse matter.” J. Phys.: Condens. Matter 21 (8) (2009): 084203.
  • Lee, K., E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, “Higher-accuracy van der Waals density functional.” Phys. Rev. B 82 (Aug 2010): p. 081101.
  • Lechner, C. and A. F. Sax, “Adhesive forces between aromatic molecules and graphene.” J. Phys. Chem. C 118 (36) (2014): 20970–20981.
  • Berashevich, J., and T. Chakraborty, “Tunable band gap and magnetic ordering by adsorption of molecules on graphene.” Phys. Rev. B 80, (3) (2009): 033404.
  • Zuber, V. and K. Strimmer, “High-dimensional regression and variable selection using car scores.” Stat. Appl. Genet. Mol. Biol. 10 (1) (2010): 34.
  • Pierce, C., “Localized adsorption on graphite and absolute surface areas.” J. Phys. Chem. 73 (4) (1969): 813–7.
  • Zacharia, R., H. Ulbricht, and T. Hertel, “Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons.” Phys. Rev.s B 69 (Apr 2004): 155406.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.