473
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Anthracene Biodegradation by Oleaginous Rhodococcus opacus for Biodiesel Production and Its Characterization

, , , ORCID Icon &
Pages 207-219 | Received 27 Apr 2016, Accepted 01 Mar 2017, Published online: 27 Mar 2017

References

  • Sherafatmand, M., and H. Y. Ng. “Using Sediment Microbial Fuel Cells (SMFCs) for Bioremediation of Polycyclic Aromatic Hydrocarbons (PAHs).” Bioresource Technol. 195 (2015): 122–30.
  • Sungthong, R., P. van West, M. Cantos, and J. J. Ortega-Calvo. “Development Of Eukaryotic Zoospores Within Polycyclic Aromatic Hydrocarbon (PAH)-Polluted Environments: A Set of Behaviors that are Relevant for Bioremediation.” Sci. Total Environ. 511 (2015): 767–76.
  • Zhang, Y., and S. Tao. “Seasonal Variation of Polycyclic Aromatic Hydrocarbons (PAHs) Emissions in China.” Environ. Pollut. 156 (2008): 657–63.
  • Hale, S. E., J. Lehmann, D. Rutherford, A. R. Zimmerman, R. T. Bachmann, V. Shitumbanuma, A. O'Toole, K. L. Sundqvist, H. P. H. Arp, and G. Cornelissen. “Quantifying the Total and Bioavailable Polycyclic Aromatic Hydrocarbons and Dioxins in Biochars”. Environ. Sci. Technol. 46 (2012): 2830–38.
  • Liu, Y., G. Zeng, H. Zhong, Z. Wang, Z. Liu, M. Cheng, L. Guansheng, X. Yanga, and S. Liu. “Effect of Rhamnolipid Solubilization on Hexadecane Bioavailability: Enhancement or Reduction?” J. Hazardous Mater. 322 (2017): 394–01.
  • Cheng, M., G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang, and Y. Liu. “Hydroxyl Radicals Based Advanced Oxidation Processes (AOPs) for Remediation of Soils Contaminated with Organic Compounds: A Review”. Chem. Eng. J. 284 (2016): 582–98.
  • Goswami, L., M. M. Tejas Namboodiri, R. Vinoth Kumar, K. Pakshirajan, and G. Pugazhenthi. “Biodiesel Production Potential of Oleaginous Rhodococcus Opacus Grown on Biomass Gasification Wastewater”. Renew. Energy (2017), doi: 10.1016/j.renene.2016.12.044.
  • Jeswani, H., and S. Mukherji. “Treatment of Simulated Biomass Gasification Wastewater of Varying Strength in a Three Stage Rotating Biological Contactor.” Chem. Eng. J. 259 (2015): 303–12.
  • Yap, C. L., S. Gan, and H. K. Ng. “Fenton Based Remediation of Polycyclic Aromatic Hydrocarbons-Contaminated Soils.” Chemosphere 83 (2011): 1414–30.
  • Mahanty, B. K., Pakshirajan, and V. V. Dasu. “Synchronous Fluorescence as a Selective Method for Monitoring Pyrene in Biodegradation Studies.” Polycyclic Aromatic Compd. 28 (2008): 213–27.
  • Samanta, S., O. M. Singh, and R. K. Jain. “Polycyclic Aromatic Hydrocarbons: Environmental Pollution and Bioremediation.” Trends Biotechnol. 20 (2002): 243–8.
  • Zhou, B., and B. Zhao. “Population Inhalation Exposure to Polycyclic Aromatic Hydrocarbons and Associated Lung Cancer Risk in Beijing Region: Contributions of Indoor and Outdoor Sources and Exposures.” Atmos. Environ. 62 (2012): 472–80.
  • Biswas, B., B. Sarkar, R. Rusmin, and R. Naidu. “Bioremediation of PAHs and VOCs: Advances in Clay Mineral–Microbial Interaction.” Environ. Int. 85 (2015): 168–81.
  • Ghosh, I., J. Jasmine, and S. Mukherji. “Biodegradation of Pyrene by a Pseudomonas Aeruginosa Strain RS1 Isolated from Refinery Sludge.” Bioresource Technol. 166 (2014): 548–58.
  • Juhasz, A. L., and R. Naidu. “Bioremediation of High Molecular Weight Polycyclic Aromatic Hydrocarbons: A Review of the Microbial Degradation of Benzo[a]pyrene.” Int. Biodeterioration Biodegradation 45 (2000): 57–88.
  • Wieczorek, J., S. Sienkiewicz, M. Pietrzak, and Z. Wieczorek. “Uptake and Phytotoxicity of Anthracene and Benzo[k]fluoranthene Applied to the Leaves of Celery Plants (Apiumgraveolens var. Secalinum L.).” Ecotoxicity Environ. Saf. 115 (2015): 19–25.
  • Das, K., and A. K. Mukherjee. “Differential Utilization of Pyrene as the Sole Source of Carbon by Bacillus Subtilis and Pseudomonas Aeruginosa Strains: Role of Biosurfactants in Enhancing Bioavailability.” J. Appl. Microbiology 102 (2007): 195–203.
  • Haritash, A. K., and C. P. Kaushik. “Biodegradation Aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A Review.” J. Hazardous Mater. 169 (2009): 1–15.
  • Blyth, W., E. Shahsavari, P. D. Morrison, and A. S. Ball. “Biosurfactant from Red Ash Trees Enhances the Bioremediation of PAH Contaminated Soil at a Former Gasworks Site.” J. Environ. Manage. 162 (2015): 30–6.
  • Zhong, Y., T. Luan, L. Lin, H. Liu, and N. F. Tam. “Production of Metabolites in the Biodegradation of Phenanthrene, Fluoranthene and Pyrene by the Mixed Culture of Mycobacterium sp. and Sphingomonas sp.” Bioresource Technol. 102 (2010): 2965–72.
  • Kim, Y. H., J. P. Freeman, J. D. Moody, K. H. Engesser, and C. E. Cerniglia. “Effects of pH on the Degradation of Phenanthrene and Pyrene by Mycobacterium Vanbaalenii PYR-1.” Appl. Microbiology Biotechnology 67 (2005): 275–85.
  • Stingley, R. L., B. Brezna, A. A. Khan, and C. E. Cerniglia. “Novel Organization of Genes in a Phthalate Degradation Operon of Mycobacterium Vanbaalenii PYR-1.” Microbiology 150 (2004): 3749–61.
  • Walter, U., M. Beyer, J. Klein, and H. Rehm. “Degradation of Pyrene by Rhodococcus sp. UW1.” Appl. Microbiology Biotechnol. 34 (1991): 671–6.
  • Kumar, S., N. Gupta, and K. Pakshirajan. “Simultaneous Lipid Production and Dairy Wastewater Treatment Using Rhodococcus Opacus in a Batch Bioreactor for Potential Biodiesel Application.” J. Environ. Chem. Eng. 3 (2015): 1630–6.
  • Wei, Z., G. Zeng, F. Huang, M. Kosa, D. Huang, and A. J. Ragauskas. “Bioconversion of Oxygen-Pretreated Kraft Lignin to Microbial Lipid with Oleaginous Rhodococcus opacus DSM 1069.” Green Chem. 17 (2015a): 2784–89.
  • Wei, Z., G. Zeng, F. Huang, M. Kosa, Q. Sun, X. Meng, D. Huang, and A. J. Ragauskas. “Microbial Lipid Production by Oleaginous Rhodococci Cultured in Lignocellulosic Autohydrolysates.” Appl. Microbiology Biotechnol. 99 (2015b): 7369–77.
  • Wells, T., Z. Wei, and A. Ragauskas. “Bioconversion Of Lignocellulosic Pretreatment Effluent via Oleaginous Rhodococcus Opacus DSM 1069.” Biomass & Bioenergy 72 (2015c): 200–5.
  • Hetzler, S., and A. Steinbüchel. “Establishment of Cellobiose Utilization for Lipid Production in Rhodococcus Opacus PD630.” Appl. Environ.l Microbiology 79 (2013): 3122–5.
  • Wei, Z., G. Zeng, M. Kosa, D. Huang, and A. J. Ragauskas. “Pyrolysis Oil-Based Lipid Production as Biodiesel Feedstock by Rhodococcus Opacus.” Appl. Biochem. Biotechnol. 175 (2015c): 1234–46.
  • Kurosawa, K., A. Radek, J. K. Plassmeier, and A. J. Sinskey. “Improved Glycerol Utilization by a Triacylglycerol Producing Rhodococcus opacus Strain for Renewable Fuels.” Biotechnol. Biofuels 8, no. 31 (2015): 1–11.
  • Lee, E. H., and K. S. Cho. “Effect of Substrate Interaction on the Degradation of Methyl tert-butyl Ether, Benzene, Toluene, Ethylbenzene, and Xylene by Rhodococcus sp.” J. Hazardous Mater. 167 (2009): 669–74.
  • Sinharoy, A., N. A. Manikandan, and K. Pakshirajan. “A Novel Biological Sulfate Reduction Method Using Hydrogenogenic Carboxydotrophicmesophilic Bacteria.” Bioresource Technol. 192 (2015): 494–500.
  • Predojevic, ´.Z., B. Škrbic and N. D. Mladenovic. “Transesterification of Linoleic and Oleic Sunflower Oils to Biodiesel Using CaO as a Solid Base Catalyst.” J. Serb. Chem. Soc. 77 (2012): 815–32.
  • Folch, J., M. Lees, and S. G. H. Sloane. “A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues.” J. Biol. Chem. 226 (1957): 497–509.
  • Kumar, V., M. Muthuraj, B. Palabhanvi, A. K. Ghoshal, and D. Das. “Evaluation and Optimization of Two Stage Sequential In Situ Transesterification Process for Fatty Acid Methyl Ester Quantification from Microalgae.” Renew. Energy 68 (2014): 560–9.
  • Su, Y. C., Y. A. Liu, C. A. Diaz Tovar, and R. Gani. “Selection of Prediction Methods for Thermophysical Properties for Process Modeling and Product Design of Biodiesel Manufacturing.” Ind. Eng. Chem. Res. 50 (2011): 6809–36.
  • Moscoso, F., F. J. Deive, M. A. Longo, and M. A. Sanroman. “Technoeconomic Assessment of Phenanthrene Degradation by Pseudomonas Stutzeri CECT 930 in a Batch Bioreactor.” Bioresource Technol. 104 (2012): 81–9.
  • Sahoo, N. K., K. Pakshirajan, and P. K. Ghosh. “Batch Biodegradation of Para-Nitrophenol Using Arthrobacter chlorophenolicus A6.” Appl. Biochem. Biotechnol. 165 (2011): 1587–96.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.