296
Views
1
CrossRef citations to date
0
Altmetric
Articles

Functional Group Effects of New Calixarene Derivatives on Catalytic and Enantioselective Behavior of Lipase

, , &
Pages 318-331 | Received 04 Aug 2016, Accepted 28 Apr 2017, Published online: 08 Jun 2017

References

  • Kim, M. G., E. G. Lee, and B. H. Chung. “Improved Enantioselectivity of Candida Rugosa Lipase Towards Ketoprofen ethyl ester by a Simple Two-Step Treatment.” Process Biochem. 35 (2000): 977–82.
  • Henke, E., S. Schuster, H. Yang, and U. T. Bornscheuer. “Lipase-Catalyzed Resolution of Ibuprofen.” Monatsch. Chem. 131 (2000): 633–8.
  • Giordano, C., G. Castaldi, and F. Uggeri. “Synthesis of Antiinflammatory α-arylalkanoic Acids by 1, 2-aryl Shift, New Synthetic Methods (42).” Angew. Chem. Int. Ed. Engl. 23 (1984): 413–9.
  • Siodmiak, T., D. Mangelings, Y. V. Heyden, M. Ziegler-Borowska, and M. P. Marszall. “High Enantioselective Novozym 435-Catalyzed Esterification of (R,S)-Flurbiprofen Monitored with a Chiral Stationary Phase.” Appl. Biochem. Biotechnol. 175 (2015): 2769–85.
  • Shin, G. S., K. W. Lee, T. K. Kim, H. D. Shin, and Y. H. Lee. “Lipasecatalyzed Production of Optically Active (S)-Flurbiprofen in Aqueous Phase Reaction System Containing Chiral Succinyl bcyclodextrin.” J. Mol. Catal. B, Enzym. 33 (2005): 93–8.
  • Qian, L.-L., S.-X. Chen, and B.-Z. Shi. “Preparation of Enantiopure (R)-Flurbiprofen Catalyzed by a Newly Isolated Bacillus Cereus C71.” Biocatal. Biotransform. 25 (2007): 29–34.
  • Cho, S.-H., P.-Y. Wang, and S.-W. Tsai. “Lipase-Catalyzed Hydrolytic Resolution of (R,S)-3-hydroxy-3-phenylpropionates in Biphasic Media.” J. Taiwan Inst. Chem. Engrs. 42 (2011): 408–12.
  • Zarei, A., N. A. S. Amin, A. Talebian-Kiakalaieh, and N. A. M. Zain. “Immobilized Lipase-Catalyzed Transesterification of Jatropha Curcas Oil: Optimization and Modeling.” J. Taiwan Inst. Chem. Engrs. 45 (2014): 444–51.
  • Lee, E. G., H. S. Won, H. S. Ro, Y. W. Ryu, and B. H. Chung. “Preparation of Enantiomerically Pure (S)-Flurbiprofen by Esterase from Pseudomonas sp. KCTC 10122BP.” J. Mol. Catal. B, Enzym. 26 (2003): 149–56.
  • Kim, G. J., G. S. Choi, J. Y. Kim, J. B. Lee, D. H. Jo, and Y. W. Ryu. “Screening, Production and Properties of a Stereospecific Esterase from Pseudomonas sp. S34 with High Selectivity to (S)-ketoprofen ethyl ester.” J. Mol. Catal. B, Enzym. 17 (2002): 29–38.
  • Choi, G. S., J. T. Kim, J. H. Kim, Y. W. Ryu, and G. J. Kim. “Construction and Characterization of a Recombinant Esterase with High Activity and Enantioselectivity to (S)-Ketoprofen ethyl ester.” Protein. Expr. Purif. 29 (2003): 85–93.
  • Babaki, M., M. Yousefi, Z. Habibi, J. Brask, and M. Mohammadi. “Preparation of Highly Reusable Biocatalysts by Immobilization of Lipases on Epoxy-Functionalized Silica for Production of Biodiesel from Canola Oil.” Biochem. Eng. J. 101 (2015): 23–31.
  • Kartal, F., M. H. A. Janssen, F. Hollmann, R. A. Sheldon, and A. Kilinc. “Improved Esterification Activity of Candida rugosa Lipase in Organic Solvent by Immobilization as Cross-linked Enzyme Aggregates (CLEAs).” J. Mol. Catal. B, Enzym. 71 (2011): 85–9.
  • Sayin, S., E. Akoz, and M. Yilmaz. “Enhanced Catalysis and Enantioselective Resolution of Racemic Naproxen Methyl Ester by Lipase Encapsulated within Iron Oxide Nanoparticles Coated with calix[8]arene Valeric Acid Complexes.” Org. Biomol. Chem. 12 (2014): 6634–42.
  • Sayin, S., E. Yilmaz, and M. Yilmaz. “Improvement of Catalytic Properties of Candida Rugosa lipase by sol–gel Encapsulation in the Presence of Magnetic calix[4]arene Nanoparticles.” Org. Biomol. Chem. 9 (2011): 4021–4.
  • Pereira, E. B., H. F. De Castro, F. F. De Moraes, and G. M. Zanin. “Kinetic Studies of Lipase from Candida rugosa.” Appl. Biochem. Biotechnol. 93 (2001): 739–52.
  • Sheldon, R. A.. “Enzyme Immobilization: The Quest for Optimum Performance.” Adv. Synth. Catal. 349 (2007): 1289–1307.
  • Ozyilmaz, E., S. Sayin, M. Arslan, and M. Yilmaz. “Improving Catalytic Hydrolysis Reaction Efficiency of sol–gel-Encapsulated Candida rugosa Lipase with Magnetic β-cyclodextrin Nanoparticles.” Colloids Surf. B, Biointerfaces 113 (2014): 182–9.
  • Akoz, E., S. Sayin, S. Kaplan, and M. Yilmaz. “Improvement of Catalytic Activity of Lipase in the Presence of Calix[4]arene Valeric Acid or Hydrazine Derivative.” Bioprocess. Biosyst. Eng. 38 (2015): 595–604.
  • Uyanik, A., N. Sen, and M. Yilmaz. “Improvement of Catalytic Activity of Lipase from Candida rugosa via sol–gel Encapsulation in the Presence of calix(aza)crown.” Bioresour. Technol. 102 (2011): 4313–8.
  • Ciaccia, M., I. Tosi, R. Cacciapaglia, A. Casnati, L. Baldini, and S. D. Stefano. “One-Shot Preparation of an Inherently Chiral Trifunctional calix[4]arenefrom an Easily Available cone-triformylcalix[4]arene.” Org. Biomol. Chem. 11 (2013): 3642–8.
  • Akkus, G. U., E. Al, and S. E. Korcan. “Selective Extraction of Toxic Heavy Metals and Biological Activity Studies using Pyrimidylthioamide Functionalised calix[4]arene.” Supramol. Chem. 27 (2015): 522–6.
  • Veesar, I. A., S. Memon, and M. N. Syed. “Synthetic p-tetrasulphonatocalix[4]arene as Novel Excipient for Lipase-Complex.” Biochem. Eng. J. 79 (2013): 71–6.
  • Slavik, P., M. Dudic, K. Flidrova, J. Sykora, I. Cisarova, S. Bohm, and P. Lhotak. “Unprecedented Meta-Substitution of Calixarenes: Direct Way to Inherently Chi-ral Derivatives.” Org. Lett. 14 (2012): 3628–31.
  • Kurzatkowska, K., S. Sayin, M. Yilmaz, H. Radecka, and J. Radecki. “Calix[4]arene Derivatives as Dopamine Hosts in Electrochemical Sensors.” Sensors Actuators B 218 (2015): 111–21.
  • Yilmaz, M. and S. Sayin. “Calixarenes in Organo and Biomimetic Catalysis,” in Calixarenes and Beyond, eds. P. Neri, J. L. Sessler, and M.-X. Wang (Berlin: Springer, 2016), 719–742
  • Ozyilmaz, E., M. Bayrakci, and M. Yilmaz. “Improvement of Catalytic Activity of Candida rugosa Lipase in the Presence of Calix[4]arene Bearing Iminodicarboxylic/Phosphonic Acid Complexes Modified Iron Oxide Nanoparticles.” Bioorg. Chem. 65 (2016): 1–8.
  • Karakurt, S., T. F. Kellici, T. Mavromoustakos, A. G. Tzakos, and M. Yilmaz. “Calixarenes in Lipase Biocatalysis and Cancer Therapy.” Current Org. Chem. 20 (2016): 1–15.
  • Kang, D. E., E. K. Lee, and R. A. Bartsch. “Cone Di-ionisable calix[4]arene-1,3-crown-5 Ligands with Elongated Pendant Side arms: Synthesis and Metal Ion Extraction.” Supramol. Chem. 28 (2016): 551–6.
  • Ozyilmaz, E. and S. Sayin. “Preparation of New Calix[4]arene-Immobilized Biopolymers for Enhancing Catalytic Properties of Candida rugosa Lipase by sol–gel Encapsulation.” Appl. Biochem. Biotechnol. 170 (2013): 1871–84.
  • Sahin, O., S. Erdemir, A. Uyanik, and M. Yilmaz. “Enantioselective Hydrolysis of (R/S)-Naproxen Methyl Ester with sol–gel Encapculated Lipase in Presence of calix[n]arene Derivatives.” Appl. Catal., A 369 (2009): 36–41.
  • Gutsche, C. D. and K. C. Nam. “Calixarenes, 22. Calixarenes. 22. Synthesis, Properties, and Metal Complexation of Aminocalixarenes.” J. Am. Chem. Soc. 110 (1988): 6153–62.
  • Collins, E. M., M. A. McKervey, E. Madigan, M. B. Moran, M. Owens, G. Ferguson, and S. J. Harris. “Chemically Modified Calix[4]arenes. Regioselective Synthesis of 1,3-(distal) Derivatives and Related Compounds. X-Ray Crystal Structure of a Diphenol-Dinitrile.” J. Chem. Soc., Perkin Trans. 1 (1991): 3137–42.
  • Alekseeva, E. A., V. A. Bacherikov, and A. I. Gren. “Synthesis of p-tert-butylcalix[4]arene Derivatives Containing Amino Acid Residues.” Russ. J. Gen. Chem. 70 (2000): 490–2.
  • Reetz, M. T., P. Tielmann, W. Wisenhofer, W. Konen, and A. Zonta. “Second Generation sol-gel Encapsulated Lipases: Robust Heterogeneous Biocatalysts.” Adv. Synth. Catal. 345 (2003): 717–28.
  • Chiou, S. H. and W. T. Wu. “Immobilization of Candida rugosa Lipase on Chitosan with Activation of the Hydroxyl Groups.” Biomater. 25 (2004): 197–204.
  • Bradford, M. M.. “A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein utilizing the Principle of Protein-Dye Binding.” Anal. Biochem. 72 (1976): 248–54.
  • Chen, C. S., Y. Fujimoto, G. Girdaukas, and C. J. Sih. “Quantitative analyses of biochemical kinetic resolutions of enantiomers.” J. Am. Chem. Soc. 104 (1982): 7294–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.