158
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of Benzo[4,5]imidazo[1,2-a]naphthyridine and Benzo[4,5]imidazo[2,1-a]isoquinoline Derivatives Catalyzed by CuI/L-Proline

, , &
Pages 465-474 | Received 25 Jul 2017, Accepted 02 Mar 2018, Published online: 26 Mar 2018

References

  • B. C. Hamann and J. F. Hartwig, “Palladium-Catalyzed Direct α-Arylation of Ketones. Rate Acceleration by Sterically Hindered Chelating Ligands and Reductive Elimination from a Transition Metal Enolate Complex,” Journal of the American Chemical Society 119, (1997): 12382–3.
  • M. Kosugi, I. Hagiwara, T. Sumiya, and T. Migita, “α-Phenylation of Ketones via Tin Enolates Catalyzed by a Palladium Complex,” Journal of the Chemical Society, Chemical Communications (1983): 344–5.
  • M. L. Hlavinka and J. R. Hagadorn, “Zn(tmp)2: A Versatile Base for the Selective Functionalization of C-H Bonds,” Organometallics 26, (2007): 4105–8.
  • P. M. Macqueen, A. J. Chisholm, B. K. V. Hargreaves, and M. Stradiotto, “Palladium-Catalyzed Mono-α-Arylation of Acetone at Room Temperature,” Chemistry – A European Journal 21, (2015): 11006–9.
  • K. D. Hesp, R. J. Lundgren, and M. Stradiotto, “Palladium-Catalyzed Mono-α-Arylation of Acetone with Aryl Halides and Tosylates,” Journal of the American Chemical Society 133, (2011): 5194–7.
  • C. He, S. Guo, L. Huang, and A. W. Lei, “Copper Catalyzed Arylation/C-C Bond Activation: An Approach toward α-Aryl Ketones,” Journal of the American Chemical Society 132, (2010): 8273–5.
  • S. G. Babu, R. Sakthivel, N. Dharmaraj, and R. Karvembu, “α-Arylation of β-Diketones with Aryl Halides Catalyzed by CuO/Aluminosilicate,” Tetrahedron Letters 55, (2014): 6873–7.
  • J. L. Liu, R. S. Zeng, C. M. Zhou, and J. P. Zou, “Copper(II) and 1,1'-Trimethylene -2,2'-Biimidazole-Promoted Arylation of Acetylacetone with Aryl Iodides,” Chinese Journal of Chemistry 29, (2011): 309–13.
  • M. Durandetti, J.-Y. Nedelec, and J. Perichon, “Nickel-Catalyzed Direct Electrochemical Cross-Coupling between Aryl Halides and Activated Alkyl Halides,” Journal of Organic Chemistry 61, (1996): 1748–55.
  • M. Henrion, M. J. Chetcuti, and V. Ritleng, “From Acetone Metalation to the Catalytic α-Arylation of Acyclic Ketones with NHC-Nickel(II) Complexes,” Chemical Communications 50, (2014): 4624–7.
  • Y. Shi, X. B. Zhu, H. B. Mao, H. W. Hu, C. J. Zhu, and Y. X. Cheng, “Synthesis of Functionalized Isoquinolin-1(2H)-Ones by Copper-Catalyzed α-Arylation of Ketones with 2-Halobenzamides,” Chemistry–A European Journal 19, (2013): 11553–7.
  • R. Beugelmans and M. Bois-Choussy, “One-pot Synthesis of 1-Oxo-1,2-Dihydroisoquinolines (Isocarbostyrils) via SRN1 (Ar) Reactions,” Synthesis (1981): 729–31.
  • J. F. Guastavino, S. M. Barolo, and R. A. Rossi “One-pot Synthesis of 3-Substituted Isoquinolin-1-(2H)-Ones and Fused Isoquinolin-1-(2H)-Ones by SRN1 Reactions in DMSO,” European Journal of Organic Chemistry (2010): 3898–902.
  • C. Y. Huang, V. Kavala, C. W. Kuo, A. Konala, T. H. Yang, and C. F. Yao, “Synthesis of Biologically Active Indenoisoquinoline Derivatives via a One-Pot Copper(II)-Catalyzed Tandem Reaction,” Journal of Organic Chemistry 82, (2017): 1961–8.
  • H. X. Wang, K. Gao, Y. W. Jiang, and D. W. Ma, “Assembly of Substituted Homophthalimides via CuI-Catalyzed Coupling of 2-Bromobenzamides with β-Keto Ester,” Heterocycles 79, (2009): 695–702.
  • X. S. Fan, Y. He, L. Y. Cui, S. H. Guo, J. J. Wang, and X. Y. Zhang, “Tandem Reactions Leading to Benzo[c]Chromen-6-Ones and 3-Substituted Isocoumarins,” European Journal of Organic Chemistry (2012): 673–7.
  • B. S. U. Rani and M. Darbarwar, “Synthesis of Coumarino[4',3':3,4]Isocoumarins, Coumarino[7',6':3,4]isocoumarins and Dibenzo-α-pyrones,” Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry 25B, (1986): 619–22.
  • M. Koukni “1,2,3,4-Tetrahydroisoquinolin-1-one Derivatives as Inhibitors of Flavivirus Replication and Their Preparation, Pharmaceutical Compositions and Use in the Treatment of Hepatitis C,” The International Application according to the Patent Cooperation Treaty (2010), 2010055164.
  • P. Lindberg and E. Carlsson, “Esomeprazole in the Framework of Proton-Pump Inhibitor Development,” Analogue-based Drug Discovery (2006): 81–113.
  • G. Sachs, J. M. Shin, O. Vagin, N. Lambrecht, I. Yakubov, and K. Munson, “The Gastric H,K ATPase as a Drug Target: Past, Present, and Future,” Journal of Clinical Gastroenterology 41, (2007): S226–42.
  • V. D. S. Manuel, L. Ana I., N. Teresa, M. Joana, T. Susana, F. Amilcar, S. Pedro, A. Luis, and S. D. S. Patricio, “Bioavailability and Bioequivalence of Two Enteric-Coated Formulations of Omeprazole in Fasting and Fed Conditions,” Clinical Drug Investigation 25, (2005): 391–9.
  • J. Freston, Y. L.Chiu, W. J. Pan, N. Lukasik, and J. Taubel, “Effects on 24-Hour Intragastric pH: A Comparison of Lansoprazole Administered Nasogastrically in Apple Juice and Pantoprazole Administered Intravenously,” The American Journal of Gastroenterology 96, (2001): 2058–65.
  • P. Richardson, C. J. Hawkey, and W. A. Stack, “Proton Pump Inhibitors,” Drugs 56, (1998): 307–35.
  • G. T. Notte, “New Chemical Entities Entering Phase III Trials in 2012,” Annual Reports in Medicinal Chemistry 48, (2013): 451–69.
  • A. M. Emmerson and A. M. Jones. “The Quinolones: Decades of Development and Use,” The Journal of Antimicrobial Chemotherapy 51, (2003): 13–20.
  • K. Mogilaiah and G. Kankaiah, “Synthesis Of Some Novel Bridgehead Nitrogen Heterocyclic Systems Containing 1,8-Naphthyridine Moiety,” Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry 42B, (2003): 192–4.
  • R. L. Weinkauf, A. Y. Chen, C. Yu, L. Liu, L. Barrows, and E. J. LaVoie, “Antineoplastic Activity of Benzimidazo[1,2-b]Isoquinolines, Indolo[2,3-b]Quinolines, and Pyridocarbazoles,” Bioorganic & Medicinal Chemistry 2, (1994): 781–6.
  • L. W. Deady and T. Rodemann, “Reduced Benzimidazo[2,1-A]Isoquinolines. Synthesis and Cytotoxicity Studies,” Australian Journal of Chemistry 54, (2001): 529–34.
  • L. W. Deady, T. Rodemann, G. J. Finlay, B. C. Baguley, and W. A. Denny, “Synthesis and Cytotoxic Activity of Carboxamide Derivatives of Benzimidazo[2,1-A]Isoquinoline and Pyrido[3',2':4,5]Imidazo[2,1-A]Isoquinoline,” Anti-Cancer Drug Design 15, (2001): 339–46.
  • D. S. Chen, G. L. Dou, Y. L. Li, Y. Liu, and X. S. Wang, “Copper(I)-Catalyzed Synthesis of 5-Arylindazolo[3,2-b]quinazolin-7(5H)-one via Ullmann-Type Reaction,” The Journal of Organic Chemistry 78, (2013): 5700–4.
  • B. B. Feng, J. Q. Liu, and X. S. Wang “Cu(OAc)2-Catalyzed Aerobic Oxidative Dehydrogenation Coupling: Synthesis of Heptacyclic Quinolizino[3,4,5,6-kla]Perimidines,” The Journal of Organic Chemistry 82, (2017): 1817–22.
  • C. Li, W. T. Zhang, and X. S. Wang, “CuI-Catalyzed C-N Bond Formation and Cleavage for the Synthesis of Benzimidazo[1,2-a]Quinazoline Derivatives,” The Journal of Organic Chemistry 79, (2014): 5847–51.
  • J. Q. Liu, Y. G. Ma, M. M. Zhang, and X. S. Wang, “Consecutive Sonogashira Coupling and Hydroamination Cyclization for the Synthesis of Isoindolo[1,2-b]Quinazolin-10(12H)-Ones Catalyzed by CuI/ L-Proline,” The Journal of Organic Chemistry 82, (2017): 4818–23.
  • C. C. C. Johansson and T. J. Colacot, “Metal-Catalyzed α-Arylation of Carbonyl and Related Molecules: Novel Trends in C-C Bond Formation by C-H Bond Functionalization,” Angewandte Chemie International Edition 49, (2010): 676–707.
  • F. Bellina and R. Rossi, “Transition Metal-Catalyzed Direct Arylation of Substrates with Activated sp3-Hybridized C-H Bonds and Some of Their Synthetic Equivalents with Aryl Halides or Pseudohalides,” Chemical Reviews 110, (2010): 1082–146.
  • Y. Schramm, M. Takeuchi, K. Semba, Y. Nakao, and J. F. Hartwig, “Anti-Markovnikov Hydroheteroarylation of Unactivated Alkenes with Indoles, Pyrroles, Benzofurans, and Furans Catalyzed by a Nickel-N Heterocyclic Carbene System,” Journal of the American Chemical Society 137, (2015): 12215–8.
  • M. Scholl, S. Ding, C. W. Lee, and R. H. Grubbs, “Synthesis and Activity of a New Generation of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with 1,3-Dimesityl-4,5- dihydroimidazol-2-ylidene Ligands,” Organic Letters 1, (1999): 953–6.
  • M. J. Durbin and M. C. Willis, “Palladium-Catalyzed α-Arylation of Oxindoles,” Organic Letters 10, (2008): 1413–5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.