239
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

An Organocatalytic Newer Synthetic Strategy Toward the Access of Polyfunctionalized 4H-Pyrans via Multicomponent Reactions

, , , &
Pages 502-515 | Received 02 Dec 2017, Accepted 16 Mar 2018, Published online: 12 Apr 2018

References

  • S. L. Schreiber, “Target-Oriented and Diversity-Oriented Organic Synthesis in Drug Discovery,” Science 287 (2000): 1964–69. doi:10.1126/science.287.5460.1964.
  • L. F. Tietze, “Domino Reactions in Organic Synthesis,” Chemical Reviews 96 (1996): 115–36. doi:10.1021/cr950027e.
  • B. M. Trost, “Atom Economy-A Challenge for Organic Synthesis: Homogeneous Catalysis Leads the Way,” Angewandte Chemie International Edition 34 (1995): 259–81. doi:10.1002/anie.199502591.
  • S. Bertelsen and K. A. Jorgensen, “Organocatalysis-After the Gold Rush,” Chemical Society Reviews 38 (2009): 2178–89. doi:10.1039/b903816g.
  • F. Giacalone, M. Gruttadauria, P. Agrigento, and R. Noto, “Low-Loading Asymmetric Organocatalysis,” Chemical Society Reviews 41 (2012): 2406–47. doi:10.1039/C1CS15206H.
  • M. J. Gaunt, C. C. Johansson, A. McNally, and N. T. Vo, “Enantioselective Organocatalysis,” Drug Discovery Today 12 (2007): 8–27. doi:10.1016/j.drudis.2006.11.004.
  • P. A. Tempest, “Recent Advances in Heterocycle Generation Using the Efficient Ugi Multiple-Component Condensation Reaction,” Current Opinion in Drug Discovery 8 (2005): 776–88.
  • H. Fujioka, K. Murai, O. Kubo, Y. Ohba, and Y. Kita, “New Three-Component Reaction:  Novel Formation of a Seven-Membered Ring by the Unexpected Reaction at the γ-Position of the β-Keto Ester,” Organic Letters 9 (2007): 1687–90. doi:10.1021/ol070402c.
  • N. M. Evdokimov, A. S. Kireev, A. A. Yakovenko, M. Y. Antipin, I. V. Magedov, and A. Kornienko, “One-Step Synthesis of Heterocyclic Privileged Medicinal Scaffolds by a Multicomponent Reaction of Malononitrile with Aldehydes and Thiols,” Journal of Organic Chemistry 72 (2007): 3443–53. doi:10.1021/jo070114u.
  • X. S. Wang, Q. Li, J. R. Wu, Y. L. Li, C. S. Yao, and S. J. Tu, “An Efficient and Highly Selective Method for the Synthesis of 3-Arylbenzo–Quinoline Derivatives Catalyzed by Iodine Via Three-Component Reactions,” Synthesis 12 (2008): 1902–10. doi:10.1055/s-2008-1067087.
  • X. Li, Y. Zhao, H. Qu, Z. Mao, and X. Lin, “Organocatalytic Asymmetric Multicomponent Reactions of Aromatic Aldehydes and Anilines with β-Ketoesters: Facile and Atom-Economical Access to Chiral Tetrahydropyridines,” Chemical Communications 49 (2013): 1401–03. doi:10.1039/c2cc38349g.
  • N. Erdmann, A. R. Philipps, I. Atodiresei, and D. Enders, “An Asymmetric Organocatalytic Quadruple Cascade Initiated by a Friedel-Crafts-Type Reaction with Electron-Rich Arenes,” Advanced Synthesis & Catalysis 355 (2013): 847–52. doi:10.1002/adsc.201201099.
  • F. Shi, W. Tan, R. Y. Zhu, G. J. Xing, and S. J. Tu, “Catalytic Asymmetric Five-Component Tandem Reaction: Diastereo- and Enantioselective Synthesis of Densely Functionalized Tetrahydropyridines with Biological Importance,” Advanced Synthesis & Catalysis 355 (2013): 1605–22. doi:10.1002/adsc.201300001.
  • S. Hatakeyama, N. Ochi, H. Numata, and S. Takano, “A New Route to Substituted 3-Methoxycarbonyldihydropyrans; Enantioselective Synthesis of (−)-Methyl Elenolate,” Journal of the Chemical Society, Chemical Communications 17 (1988): 1202–04. doi:10.1039/C39880001202.
  • K. Singh, J. Singh, and H. Singh, “A Synthetic Entry Into Fused Pyran Derivatives Through Carbon Transfer Reactions of 1,3-Oxazinanes and Oxazolidines with Carbon Nucleophiles,” Tetrahedron 52 (1996): 14273–280. doi:10.1016/0040-4020(96)00879-4.
  • N. Martin, G. Martin, A. C. Secoane, J. L. Marco, A. Albert, and F. H. Cano, “Michael Addition of Malononitrile to α-Acetylcinnamamides,” Liebigs Annalen der Chemie 1993 (1993): 801–04. doi:10.1002/jlac.1993199301125.
  • J. L. Wang, D. Liu, Z. J. Zhang, S. Shan, X. Han, S. M. Srinivasula, C. M. Croce, E. S. Alnemri, and Z. Huang, “Structure-Based Discovery of an Organic Compound that Binds Bcl-2 Protein and Induces Apoptosis of Tumor Cells,” Proceedings of the National Academy of Sciences 97 (2000): 7124–29. doi:10.1073/pnas.97.13.7124.
  • D. Kumar, V. B. Reddy, S. Sharad, U. Dube, and S. Kapur, “A Facile One-Pot Green Synthesis and Antibacterial Activity of 2-Amino-4H-Pyrans and 2-Amino-5-Oxo-5,6,7,8- Tetrahydro-4H-Chromenes,” European Journal of Medicinal Chemistry 44 (2009): 3805–09. doi:10.1016/j.ejmech.2009.04.017.
  • A. G. Martinez and L. J. Marco, “Friedlander Reaction on 2-Amino-3-Cyano-4H-Pyrans: Synthesis of Derivatives of 4H-Pyran[2,3-b]Quinoline, New Tacrine Analogues,” Bioorganic & Medicinal Chemistry Letters 7 (1997): 3165–70. doi:10.1016/S0960-894X(97)10165-2.
  • L. Bonsignore, G. Loy, D. Secci, and A. Calignano, “Synthesis and Pharmacological Activity of 2-Oxo-(2H)1-Benzopyran-3-Carboxamide Derivatives,” European Journal of Medicinal Chemistry 28 (1993): 517–20. doi:10.1016/0223-5234(93)90020-F.
  • W. Kemnitzer, S. Kasibhatla, S. Jiang, H. Zhang, J. Zhao, S. Jia, L. Xu, C. C. Grundy, R. Denis, N. Barriault, L. Vaillancourt, S. Charron, J. Dodd, G. Attardo, D. Labrecque, S. Lamothe, H. Gourdeau, B. Tseng, J. Drewe, and S. X. Cai, “Discovery of 4-Aryl-4H-Chromenes as a New Series of Apoptosis Inducers Using a Cell- and Caspase-Based High-Throughput Screening Assay. 2. Structure–Activity Relationships of the 7- and 5-, 6-, 8-Positions,” Bioorganic & Medicinal Chemistry Letters 15 (2005): 4745–51. doi:10.1016/j.bmcl.2005.07.066.
  • K. Niknam, M. Khataminejad, and F. Zeyaei, “Diethylene Glycol-Bis(3-Methylimidazolium) Dihydroxide as a Dicationic Ionic Liquid Catalyst for the Synthesis of 4H-Pyrane Derivatives in Aqueous Medium,” Tetrahedron Letters 57 (2016): 361–65. doi:10.1016/j.tetlet.2015.12.034.
  • C. W. Smith, J. M. Bailey, M. E. J. Billingham, S. Chandrasekhar, C. P. Dell, A. K. Harvey, C. A. Hicks, A. E. Kingston, and G. N. Wishart, “The Anti- Rheumatic Potential of a Series of 2,4-di-Substituted-4Hnaphtho[1,2-b]pyran-3-Carbonitriles,” Bioorganic & Medicinal Chemistry 5 (1995): 2783–88. doi:10.1016/0960-894X(95)00487-E.
  • E. A. Bey, M. S. Bentle, K. E. Reinicke, Y. Dong, C. R. Yang, L. Girard, J. D. Minna, W. G. Bornmann, J. Gao, and D. A. Boothman, “An NQO1- and PARP-1-Mediated Cell Death Pathway Induced in Non-Small-Cell Lung Cancer Cells by Beta-Lapachone,” Proceedings of the National Academy of Sciences 104 (2007): 11832–37. doi:10.1073/pnas.0702176104.
  • A. G. E. Amr, A. M. Mohamed, S. F. Mohamed, N. A. A. Hafez, and A. E. Hammam, “Anticancer Activities of Some Newly Synthesized Pyridine, Pyrane, and Pyrimidine Derivatives,” Bioorganic & Medicinal Chemistry 14 (2006): 5481–88. doi:10.1016/j.bmc.2006.04.045.
  • N. S. Babu, N. Pasha, K. T. V. Rao, P. S. Prasad, and N. Lingaiah, “A Heterogeneous Strong Basic Mg/La Mixed Oxide Catalyst for Efficient Synthesis of Polyfunctionalized Pyrans,” Tetrahedron Letters 49 (2008): 2730–33. doi:10.1016/j.tetlet.2008.02.154.
  • Y. Peng, and G. Song, “Amino-Functionalized Ionic Liquid as Catalytically Active Solvent for Microwave-Assisted Synthesis of 4H-Pyrans,” Catalysis Communications 8 (2007): 111–14. doi:10.1016/j.catcom.2006.05.031.
  • U. R. Pratap, D. V. Jawale, P. D. Netnakar, and R. A. Mane, “Baker's Yeast Catalyzed One-Pot Three-Component Synthesis of Polyfunctionalized 4H-Pyrans,” Tetrahedron Letters 52 (2011): 5817–19. doi:10.1016/j.tetlet.2011.08.135.
  • P. P. Bora, M. Bihani, and G. Bez, “Beyond Enzymatic Promiscuity: Asymmetric Induction by L-Proline on Lipase Catalyzed Synthesis of Polyfunctionalized 4H-Pyrans,” RSC Advances 5 (2015): 50597–603. doi:10.1039/C5RA08785F.
  • R. M. N. Kalla, M. R. Kim, and I. Kim, “Dibutylamine-Catalysed Efficient One-Pot Synthesis of Biologically Potent Pyrans,” Tetrahedron Letters 56 (2015): 717–20. doi:10.1016/j.tetlet.2014.12.079.
  • B. P. V. Lingaiah, G. V. Reddy, T. Yakaiah, B. Narsaiah, S. N. Reddy, R. Yadha, and P. S. Rao, “Efficient and Convenient Method for the Synthesis of Poly Functionalised 4H‐Pyrans,” Synthetic Communications 34 (2004): 4431–37. doi:10.1081/SCC-200039502.
  • S. G. Zhang, S. F. Yin, Y. D. Wei, S. L. Luo, and C. T. Au, “Novel MgO-SnO2 Solid Superbase as a High-Efficiency Catalyst for One-Pot Solvent-Free Synthesis of Polyfunctionalized 4H-Pyran Derivatives,” Catalysis Letters 142 (2012): 608–14. doi:10.1007/s10562-012-0805-5.
  • E. Nope, J. J. Martinez, H. A. Rojas, A. G. Sathica, and G. P. Romanelli, “Synthesis of Mesoporous Ca-MCM Catalysts and Their Use in Suitable Multicomponent Synthesis of Polyfunctionalized Pyrans,” Research on Chemical Intermediates 43 (2017): 2103–118. doi:10.1007/s11164-016-2749-7.
  • H. Kiyani, and F. Ghorbani, “Potassium Phthalimide Promoted Green Multicomponent Tandem Synthesis of 2-Amino-4H-Chromenes and 6-Amino-4H-Pyran-3-Carboxylates,” Journal of Saudi Chemical Society 18 (2014): 689–701. doi:10.1016/j.jscs.2014.02.004.
  • R. Ramesh, and A. Lalitha, “PEG-Assisted Two-Component Approach for the Facile Synthesis of 5-Aryl-1,2,4-Triazolidine-3-Thiones Under Catalyst-Free Conditions,” RSC Advances 5 (2015): 51188–51192. doi:10.1039/C5RA07726E.
  • R. Ramesh, and A. Lalitha, “Synthesis of Pyran Annulated Heterocyclic Scaffolds: A Highly Convenient Protocol Using Dimethylamine,” Research on Chemical Intermediates 41 (2015): 8009–8017. doi:10.1007/s11164-014-1873-5.
  • R. Ramesh, S. Maheswari, S. Murugesan, R. Sandhiya, and A. Lalitha, “Catalyst-Free One-Pot Synthesis and Antioxidant Evaluation of Highly Functionalized Novel 1,4-Dihydropyridine Derivatives,” Research on Chemical Intermediates 41 (2015): 8233–43. doi:10.1007/s11164-014-1887-z.
  • R. Ramesh, and A. Lalitha, “Facile and Green Chemistry Access to 5-Aryl-1,2,4-Triazolidine-3-Thiones in Aqueous Medium,” ChemistrySelect 1 (2016): 2085–89. doi:10.1002/slct.201600348.
  • R. Ramesh, R. Madhesh, J. G. Malecki, and A. Lalitha, “Piperidine Catalyzed Four-Component Strategy for the Facile Access of Polyfunctionalized 1,4-Dihydropyridines at Ambient Conditions,” ChemistrySelect 1 (2016): 5196–200. doi:10.1002/slct.201601358.
  • R. Ramesh, P. Vadivel, S. Maheswari, and A. Lalitha, “Click and Facile Access of Substituted Tetrahydro-4Hchromenes Using 2-Aminopyridine as a Catalyst,” Research on Chemical Intermediates 42 (2016): 7625–36. doi:10.1007/s11164-016-2557-0.
  • R. Ramesh, N. Nagasundaram, D. Meignanasundar, and A. Lalitha, “Glycerol Assisted Eco-Friendly Strategy for the Facile Synthesis of 4,4′-(arylmethylene)bis(3-methyl-1H-pyrazol-5-ols) and 2-aryl-2,3-dihydroquinazolin-4(1H)-ones Under Catalyst-Free Conditions,” Research on Chemical Intermediates 43 (2017): 1767–82. doi:10.1007/s11164-016-2728-z.
  • R. Ramesh, S. Maheswari, M. Arivazhagan, J. G. Malecki, and A. Lalitha, “Cyanuric Chloride Catalyzed Metal-Free Mild Protocol for the Synthesis of Highly Functionalized Tetrahydropyridine,” Tetrahedron Letters 58 (2017): 3905–09. doi:10.1016/j.tetlet.2017.08.074.
  • R. Ramesh, P. Kalisamy, J. G. Malecki, and A. Lalitha, “Metal-Free Mild Synthesis of Novel 1′H-spiro[cycloalkyl-1,2′-quinazolin]-4′(3′H)-ones by an Organocatalytic Cascade Reaction,” Synlett 29 (2018): 203–8. doi:10.1055/s-0036-1590917.
  • R. Ramesh, G. Sankar, J. G. Malecki, and A. Lalitha, “Carbon-SO3H Derived from Glycerol: A Green Recyclable Catalyst for Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones,” Journal of the Iranian Chemical Society 15 (2018): 1–9. doi:10.1007/s13738-017-1202-1.
  • R. Ramesh, D. Meignanasundar, and A. Lalitha, “An Organocatalytic Novel Synthesis of Polyfunctionalized Bis-2,5-Dihydrofuran-3-Carboxylates Via Domino-MCR Strategy,” ChemistrySelect 2 (2017): 10210–14. doi:10.1002/slct.201701786.
  • O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. J. Puschmann, “OLEX2: A Complete Structure Solution, Refinement and Analysis Program,” Journal of Applied Crystallography 42 (2009): 339–41. doi:10.1107/S0021889808042726.
  • G. M. Sheldrick, “A Short History of SHELX,” Acta Crystallographica A64 (2008): 112–22. doi:10.1107/S0108767307043930.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.