232
Views
7
CrossRef citations to date
0
Altmetric
Articles

Microwave Assisted Synthesis of Novel Schiff Bases of Pyrazolyl Carbaldehyde and Triazole in PEG-400

, , &
Pages 1315-1320 | Received 05 May 2018, Accepted 28 Oct 2018, Published online: 08 Jan 2019

References

  • E. Palaska, M. Aytemir, I. T. Uzbay, and D. Erol, “Synthesis and Antidepressant Activities of Some 3,5-Diphenyl-2-Pyrazolines,” European Journal of Medicinal Chemistry 36 (2001): 539–43. doi:10.1016/S0223-5234(01)01243-0.
  • A. A. Bilgin, E. Palaska, R. Sunal, and B. Gümüşel, “Some 1,3,5-Triphenyl-2-Pyrazolines with Antidepressant Activities,” Die Pharmazie 49 (1994): 67–9.
  • D. S. Wagare, S. Mujahed, F. Mazahar, and D. Ayesha, “PEG-1500 in Water: A Green, Recyclable Catalyst for the One-Pot Synthesis of Imidazo[1,2-a]Pyrimidines under Microwave Irradiation,” Chemistry & Biology Interface 6, no. 6 (2016): 405–9.
  • D. S. Wagare, M. Farooqui, T. D. Keche, and A. Durrani, “Efficient and Green Microwave-Assisted One-Pot Synthesis of Azaindolizines in PEG-400 and Water,” Synthetic Communications 46, no. 21 (2016): 1741–6.
  • D. S. Wagare, D. Lingampalle, M. Farooqui, and D. Ayesha, “An Environmentally Benign One-Pot Synthesis of 3-Aryl-Furo[3,2-c]Coumarins in PEG-400 and Water,” Der Pharma Chemica 8, no. 1 (2016): 408–11.
  • D. S. Wagare, P. D. Netankar, M. Shaikh, M. Farooqui, and A. Durrani, “Highly Efficient Microwave-Assisted One-Pot Synthesis of 4-Aryl-2-Aminothiazoles in Aqueous Medium,” Environmental Chemistry Letters 6, no. 6 (2016): 405–9. doi:10.1007/s10311-017-0619-1.
  • R. Huisgen, “1,3-Dipolar Cycloadditions. Past and Future,” Angewandte Chemie International Edition in English 2, no. 10 (1963): 565–98. doi:10.1002/anie.196305651.
  • M. Meldal and C. W. Tornøe, “Cu-Catalyzed Azide-Alkyne Cycloaddition,” Chemical Reviews 108 (2008): 2952–3015.
  • W. Peng and V. V. Fokin, “Catalytic Azide-Alkyne Cycloaddition: Reactivity and Applications,” Aldrichimica Acta 40 (2007): 7–17.
  • V. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. B. Sharpless, “A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective ‘Ligation’ of Azides and Terminal Alkynes,” Angewandte Chemie International Edition 41 (2002): 2596–9.
  • V. D. Bock, H. Hiemstra, and J. H. van Maarseveen, “CuI-Catalyzed Alkyne-Azide Click Cycloadditions from a Mechanistic and Synthetic Perspective,” European Journal of Organic Chemistry 2006 (2006): 51–68 and references [9, 10].
  • J. Graff, S. Harder, O. Wahl, E. Scheuermann, and J. Gossmann, “Anti-inflammatory Effects of Clopidogrel Intake in Renal Transplant Patients: Effects on Platelet-Leukocyte Interactions, Platelet CD40 Ligand Expression, and Proinflammatory Biomarkers,” Clinical Pharmacology & Therapeutics 78 (2005): 468–76. doi:10.1016/j.clpt.2005.08.002.
  • J. S. M. Pasin, A. P. O. Ferreira, A. L. L. Saraiva, V. Ratzlaff, R. Andrighetto, P. Machado, S. Marchesan, R. A. Zanette, H. G. Bonacorso, N. Zanatta, et al., “Antipyretic and Antioxidant Activities of 5-Trifluoromethyl-4,5-Dihydro-1H-Pyrazoles in Rats,” Brazilian Journal of Medical and Biological Research 43 (2010): 1193–202. doi:10.1590/S0100-879X2010007500139.
  • S. S. Bahekar and D. B. Shinde, “Synthesis and Anti-inflammatory Activity of Some [4,6-(4-Substituted aryl)-2-Thioxo-1,2,3,4-Tetrahydro-Pyrimidin-5-yl]-Acetic Acid Derivatives,” Bioorganic & Medicinal Chemistry Letters 14 (2004): 1733–6.
  • J. P. Beck, M. A. Curry, R. J. Chorvat, L. W. Fitzgerald, P. J. Gilligan, R. Zaczek, G. L. Trainor, and M. A. Curry, “Thiazolo[4,5-d]Pyrimidine Thiones and -Ones as Corticotropin-Releasing Hormone (CRH-R1) Receptor Antagonists,” Bioorganic & Medicinal Chemistry Letters 9 (1999): 1185–8.
  • V. Alagarsamy, S. Meena, K. V. Ramseshu, V. R. Solomon, K. Thirumurugan, K. Dhanabal, and M. Murugan, “Synthesis, Analgesic, Anti-inflammatory, Ulcerogenic Index and Antibacterial Activities of Novel 2-Methylthio-3-substituted-5,6,7,8-tetrahydrobenzo-(b)thieno[2,3-d]Pyrimidin-4 (3H)-Ones,” European Journal of Medicinal Chemistry 41 (2006): 1293–300.
  • R. R. Gupta, M. Kumar, and V. Gupta, Heterocyclic Chemistry I, vol. 1 (New York: Springer, 1998).
  • I. Ahamad, R. Prasad, and M. A. Quraish, “Thermodynamic, Electrochemical and Quantum Chemical Investigation of Some Schiff Bases as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution,” Corrosion Science 52, no. 3 (2010): 933–42. doi:10.1016/j.corsci.2009.11.016.
  • M. Antonijevic and M. Petrovic, “Copper Corrosion Inhibitors. A Review,” International Journal of Electrochemical Science 3, no. 1 (2008): 1–28.
  • B. Turkkan, B. Sarıboga, and N. Sarıboga, “Synthesis, Characterization and Antimicrobial Activity of 3,5-DiTert-Butylsalicylaldehyde-S-Methylthiosemicarbazones and Their Ni(II) Complexes,” Transition Metal Chemistry 36, no. 6 (2011): 679–84. doi:10.4236/ijoc.2013.33A008.
  • V. L. Siji, M. R. Sudarsanakumar, and S. Suma, “Synthesis, Spectroscopic Characterization, and Antimicrobial Activity of Cobalt(II) Complexes of Acetone-N(4) Phenylsemicarbazone: Crystal Structure of [Co(HL)2(MeOH)2](NO3)2,” Transition Metal Chemistry 36, no. 4 (2011): 417–24.
  • J. Balsells, L. Mejorado, M. Phillips, F. Ortega, G. Aguirre, R. Somanathan, and P. J. Walsh, “Synthesis of Chiral Sulfonamide/Schiff Base Ligands,” Tetrahedron: Asymmetry 9 (1998): 4135–42.
  • A. M. Isloor, B. Kalluraya, and P. Shetty, “Regioselective Reaction: Synthesis, Characterization and Pharmacological Studies of Some New Mannich Bases Derived from 1,2,4-Triazoles,” European Journal of Medicinal Chemistry 44, no. 9 (2009): 3784–7. doi:10.1016/j.ejmech.2009.04.038.
  • S. Krishnaraj, M. Muthukumar, P. Viswanathamurthi, and S. Sivakumar, “Studies on Ruthenium(II) Schiff Base Complexes as Catalysts for Transfer Hydrogenation Reactions,” Transition Metal Chemistry 33, no. 5 (2008): 643–8.
  • S. Eswaran, A. V. Adhikari, and N. S. Shetty, “Synthesis and Antimicrobial Activities of Novel Quinoline Derivatives Carrying 1,2,4-Triazole Moiety,” European Journal of Medicinal Chemistry 44, no. 11 (2009): 4637–47.
  • P. Przybylski, A. Huczynski, K. Pyta, B. Brzezinski, and F. Bartl, “Biological Properties of Schiff Bases and Azo Derivatives of Phenols,” Current Organic Chemistry 13, no. 2 (2009): 124–48. doi:10.2174/138527209787193774.
  • G. Bringmann, M. Dreyer, J. H. Faber, P. W. Dalsgaard, D. Staerk, and J. W. Jaroszewski, “Ancistrotanzanine C and Related 5,1′- and 7,3′-Coupled Naphthylisoquinoline Alkaloids from Ancistrocladus tanzaniensis,” Journal of Natural Products 67, no. 5 (2004): 743–8. doi:10.1021/np0340549.
  • A. O. deSouza, F. C. S. Galetti, C. L. Silva, B. Bicalho, M. M. Parma, S. F. Fonseca, A. J. Marsaioli, A. C. L. B. Trindade, R. P. Freritas Gil, F. S. Bezerra, et al., “Antimycobacterial and Cytotoxicity Activity of Synthetic and Natural Compounds,” Química Nova 30, no. 7 (2007): 1563–6.
  • V. V. Namboodiri and R. S. Varma, “Microwave-Accelerated Suzuki Cross-coupling Reaction in Polyethylene Glycol (PEG),” Green Chemistry 3 (2001): 146–8.
  • A. Haimov and R. Neumann, “Polyethylene Glycol as a Non-ionic Liquid Solvent for Polyoxometalate Catalyzed Aerobic Oxidation,” Chemical Communications (2002): 876–7.
  • L. Heiss and H. J. Gais, “Polyethylene Glycol Monomethyl Ether-Modified Pig Liver Esterase: Preparation, Characterization and Catalysis of Enantioselective Hydrolysis in Water and Acylation in Organic Solvents,” Tetrahedron Letters36 (1995): 3833–6.
  • S. Chandrasekar, C. Narsihmulu, S. S. Shameem, and N. R. Reddy, “Osmium Tetroxide in Poly(ethylene glycol) (PEG): A Recyclable Reaction Medium for Rapid Asymmetric Dihydroxylation under Sharpless Conditions,” Chemical Communications (2003): 1716–26.
  • K. Tanemura, T. Suzuki, Y. Nishida, and T. Horaguchi, “Aldol Condensation in Water Using Polyethylene Glycol 400,” Chemistry Letters 34 (2005): 576–7.
  • R. Kumar, P. Chaudhary, S. Nimesh, and R. Chandra, “Polyethylene Glycol as a Non-ionic Liquid Solvent for Michael Addition Reaction of Amines to Conjugated Alkenes,” Green Chemistry 8 (2006): 356–8.
  • R. Ballini, L. Barbonia, and A. Palmieria, “Improved Chemoselective, Ecofriendly Conditions for the Conversion of Primary Alkyl Halides into Nitroalkanes under PEG400,” Green Chemistry 10 (2008): 1004–6.
  • T. J. Dickerson, N. N. Reed, and K. D. Janda, “Soluble Polymers as Scaffolds for Recoverable Catalysts and Reagents,” Chemical Reviews 102 (2002): 3325–44.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.