198
Views
2
CrossRef citations to date
0
Altmetric
Articles

Synthesis of New 4-Oxo-Tetrahydroindol Derivatives by Using Chemical and Microbial Biotransformation Methods

, , &
Pages 1390-1396 | Received 21 Jun 2018, Accepted 23 Nov 2018, Published online: 15 Feb 2019

References

  • W. Gul and M. T. Hamann, “Indole Alkaloid Marine Products: An Established Source of Cancer Drug Leads with Considerable Promise for the Control of Parasitic, Neurological and Other Diseases,” Life Sciences 78 (2005): 442–53.
  • G. M. Keating, “Nintedanib: A Review of Its Use in Patients with Idiopathic Pulmonary Fibrosis,” Drugs 75 (2015): 1131–40.
  • I. A. Parshikov, A. I. Netrusov, and J. B. Sutherland, “Microbial Transformation of Azaarenes and Potential Uses in Pharmaceutical Synthesis,” Applied Microbiology and Biotechnology 95 (2012): 871–89.
  • M. Petersen and A. Kiener, “Biocatalysis. Preparation and Functionalization of N-Heterocycles,” Green Chemistry 1 (1999): 99–106.
  • L. Rui, K. F. Reardon, and T. K. Wood, “Protein Engineering of Toluene Ortho-Monooxygenase of Burkholderia cepacia G4 for Regiospecific Hydroxylation of Indole to Form Various Indigoid Compounds,” Applied Microbiology and Biotechnology 66 (2005): 422–29.
  • W. Hüttel and D. Hoffmeister, “Fungal Biotransformations in Pharmaceutical Sciences,” in The Mycota, Industrial Applications, edited by M. Hofrichter (Berlin: Springer, 2010), 293–317.
  • K. Faber, Biotransformations in Organic Chemistry: A Textbook (Berlin, Germany: Springer, 2011).
  • T. Oshima, S. Kawai, and F. Egami, “Oxidation of Indole to Indigotin by Pseudomonas indoloxidans,” Journal of Biochemistry 58 (1965): 259–63.
  • S. Fetzner, B. Tshisuaka, F. Lingens, R. Kappl, and J. Hüttermann, “Bacterial Degradationof Quinoline and Derivatives Pathways and Their Biocatalysts,” Angewandte Chemie International Edition 37 (1998): 576–97.
  • M. Jha, T. Y. Chou, and B. Blunt, “General Synthesis of Mono-, Di-, and Tri-Acetylated Indoles from Indolin-2-Ones,” Tetrahedron 67 (2011): 982–89.
  • J. L. Yuan, B. J. Liu, and X. G. Xiao, “Biooxidation of Indole and Characteristics of the Responsible Enzymes,” African Journal of Biotechnology 10 (2011): 19855–63.
  • M. A. D. Boaventura, R. F. A. P. Lopez, and J. A. Takahashi, “Microorganism as Tools in Modern Chemistry: The Biotransformation of 3-Indolyacetonitrile and Tryptamine by Fungi,” Brazilian Journal of Microbiology 35 (2004): 345–47.
  • M. Torshabi, M. Badiee, M. A. Faramarzi, H. Rastegar, H. Forootanfar, and E. Mohit, “Biotransformation of Methyltestosterone by the Filamentous Fungus Mucor racemosus,” Chemistry of Natural Compounds 47 (2011): 59–63.
  • D. Lubertozzi and J. D. Keasling, “Developing Aspergillus as a Host for Heterologous Expression,” Biotechnology Advances 27 (2008): 53–75.
  • J. Alarcon, “Biotransformation of Indole Derivatives by Mycelial Cultures,” Zeitschrift für Naturforschung C 63 (2008): 82–4.
  • I. A. Parshikov, K. A. Woodling, and J. B. Sutherland, “Biotransformations of Organic Compounds Mediated by Cultures of Aspergillus niger,” Applied Microbiology and Biotechnology 99 (2015): 6971–86.
  • Z. Z. Caliskan and M. S. Ersez, “Stereoselective Synthesis of Optically Active 1-Benzyl-4,5,6,7-Tetrahydro-6,6-Dimethyl-4-Oxo-1H-Indol-7-yl Acetate and 1-Benzyl-6,7-Dihydro-7-Hydroxy-6,6-Dimethyl-1H-,ndol-4(5H)-One through Lipase-Catalyzed Esterification and Transesterification Processes,” Journal of Molecular Catalysis B: Enzymatic 111 (2015): 64–70.
  • A. S. Demir, Z. Caliskan, and E. Sahin, “Enantioselective Synthesis of 4,5,6,7-Tetrahydro-4-Oxo-Benzofuran-5-yl Acetate and 1-Benzyl-4,5,6,7-Tetrahydro-4-Oxo-1(H)-Indol-5-yl Acetate Using Chemoenzymatic Methods,” Journal of Molecular Catalysis B: Enzymatic 44 (2007): 87–92.
  • S. A. Patil, R. Patil, and D. D. Miller, “Indole Molecules as Inhibitors of Tubulin Polymerization: Potential New Anticancer Agents,” Future Medicinal Chemistry 4 (2012): 2085–115.
  • N. K. Kaushik, N. Kaushik, P. Attri, N. Kumar, C. H. Kim, A. K. Verma, and E. H. Choi, “Biomedical Importance of Indoles,” Molecules 18 (2013): 6620–62.
  • M. Matsumoto and N. Watanabe, “A Facile Synthesis of 4-Oxo-4,5,6,7-Tetrahydroindoles,” Heterocycles 22 (1984): 2313–6.
  • E. I. Heiba, R. M. Dessau, and W. J. J. Koehl Jr., “Oxidation by Metal Salts. IV. A New Method for the Preparation of Gamma Lactones by the Reaction of Manganic Acetate with Olefins,” Journal of the American Chemical Society 90 (1968): 5905–6. J. B. Bush Jr. and H. Finkbeiner, Oxidation Reactions of Manganese(III) Acetate. II. Formation of Gamma Lactones from Olefins and Acetic Acid,” Journal of the American Chemical Society 90 (1968): 5903–5. E. I. Heiba and R. M. Dessau, “Oxidation by Metal Salts. XII. Novel One-step Synthesis of 1,4-Diketones,” Journal of Organic Chemistry 39 (1974): 3457–9.
  • G. J. Williams and N. R. Hunter, “Situselective α′-Acetoxylation of Some α,β-Enones by Manganase Acetate Oxidation,” Canadian Journal of Chemistry 54 (1976): 3830–2.
  • A. S. Demir and A. Jeganathan, “Selective Oxidation of α,β-Unsaturated Ketones at the α′ Position,” Synthesis 1992 (1992): 235–47; A. S. Demir, H. Findik, E. Kose, “A New and Efficient Chemoenzymatic Route to Both Enantiomers of α′-Acetoxy-α-Methyl and γ-Hydroxy-α-Methyl Cyclic Enones,” Tetrahedron: Asymmetry 15 (2004): 777–81; A. S. Demir, N. Camkerten, Z. Gercek, N. Duygu, O. Reis, and E. Arikaz, “Butenolide Annelation Using Manganese(III) Oxidation. A Synthesis of 4-Arylfuran 2(5H)-Ones,” Tetrahedron 55 (2004): 2441–8.
  • Lubertozzi and Keasling, “Developing Aspergillus as a Host,” 53–75.
  • J. M. Bobbitt, C. L. Kulkarni, C. P. Dutta, H. Kofod, and K. N. Chiong, “Syntheses of Indoles and Carbolines via Aminoacetaldehyde Acetals,” Journal of Organic Chemistry 43 (1978): 3541–50.
  • M. Lilly, “Advances in Biotransformation Processes,” Chemical Engineering Science 49 (1994): 151–9.
  • N. A. Salvi and S. Chattopadhyay, “Asymmetric Reduction of Halo-Substituted Arylalkanones with Rhizopus arrhizus,” Tetrahedron: Asymmetry 19 (2008): 1992–7.
  • H. Suzuki, A. Tsukuda, M. Kondo, M. Aizawa, Y. Senoo, M. Nakajima, T. Watanabe, Y. Yokoyama, and Y. Murakami, “Unexpected Debenzylation of N-Benzylindoles with Lithium Base. A New Method of N-Debenzylation,” Tetrahedron Letters 36 (1995): 1671–2.
  • T. Watanabe, A. Kobayashi, M. Nishiura, H. Takahashi, T. Usui, I. Kamiyama, N. Mochizuki, K. Noritake, Y. Yokoyama, and Y. Murakami, “Synthetic Studies on Indoles and Related Compounds: XXVI: The Debenzylation of Protected Indole Nitrogen with Aluminum Chloride: (2),” Chemical and Pharmaceutical Bulletin 39 (1991): 1152–6.
  • T. Srinivasa Rao and P. S. Pandey, “An Efficient Method for the N‐Debenzylation of Aromatic Heterocycles,” Synthetic Communications 34 (2004): 3121–7.
  • W. B. Betts and R. K. Dart, “Initial Reactions in Degradation of Tri- and Tetrameric Lignin-Related Compounds by Aspergillus flavus,” Mycological Research 92 (1989): 177–81.
  • H. Kuroda, A. Miyadera, A. Imura, and A. Suzuki, “Partial Purification, and Some Properties and Reactivities of Cetraxate Benzyl Ester Hydrochloride-Hydrolyzing Enzyme,” Chemical and Pharmaceutical Bulletin 37 (1989): 2929–32.
  • K. Honda, M. Kataoka, H. Ono, K. Sakamoto, S. Kita, and S. Shimizu, “Purification and Characterization of a Novel Esterase Promising for the Production of Useful Compounds from Microbacterium sp. 7‐1W,” FEMS Microbiology Letters 206 (2002): 221–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.