251
Views
5
CrossRef citations to date
0
Altmetric
Articles

Synthesis and Biological Evaluation of Some New Thiophene, Thiazole, Dithiolane Derivatives and Related Compounds

, & ORCID Icon
Pages 1445-1458 | Received 06 Sep 2018, Accepted 29 Nov 2018, Published online: 31 Dec 2018

References

  • US Patent 5,807,805, September 15, 1998.
  • E. Gillespie, K. M. Dungan, A. W. Gomol, and R. J. Seidehamel, “Selected Immunologic Properties of Tiprinast, a Non-steroidal Antiallergy Agent,” International Journal of Immunopharmacology 7, no. 5 (1985): 655–60.
  • S. Vinita, C. Nitin, and K. A. Ajay, “Significance and Biological Importance of Pyrimidine in the Microbial World,” International Journal of Medicinal 2014 (2014): 1–31.
  • Chem. Abstr. 1994, 120, 290120.
  • Chem. Abstr. 1977, 87, 117896.
  • N. M. Yahia, A. K. Nahed, A. Seham, S. Al-Sh Salem, A. F. Thoraya, A. Fargaly, and S. M. Mohammad, “Antimicrobial Activity of Thiophene Derivatives Derived from Ethyl (E)-5-(3-(Dimethylamino)Acryloyl)-4-Methyl-2-(Phenylamino)Thiophene-3-Carboxylate,” Chemistry Central Journal 11 (2017): 75.
  • J. B. Baell and G. A. Holloway, “New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays,” Journal of Medicinal Chemistry 53, no. 7 (2010): 2719–40.
  • R. C. Larock, Comprehensive Organic Transformations, 2nd ed. (Weinheim: Wiley-VCH, 1999).
  • N. Sewald and H. D. Jakubke, Peptides: Chemistry and Biology (Weinheim: Wiley-VCH, 2002).
  • B. L. Bray, “Large-Scale Manufacture of Peptide Therapeutics by Chemical Synthesis,” Nature Reviews Drug Discovery 2 (2003): 587–93.
  • A. Greenberg, C. M. Breneman, and J. F. Liebman, Amide Linkage: Selected Structural Aspects in Chemistry, Biochemistry, and Materials Science (New York: Wiley-Interscience, 2000).
  • E. Valeur and M. Bradley, “Amide Bond Formation: Beyond the Myth of Coupling Reagents,” Chemical Society Reviews 38, no. 2 (2009): 606–31.
  • B. Xiong, L. Zhu, X. Feng, J. Lei, T. Chen, Y. Zhou, L. B. Han, C. T. Au, and S. F. Yin, “Direct Amidation of Carboxylic Acids with Tertiary Amines: Amide Formation over Copper Catalysts through C–N Bond Cleavage,” European Journal of Organic Chemistry 2014, no. 20 (2014): 4244–47.
  • S. Ghosh, A. Bhaumik, J. Mondal, A. Mallik, S. Sengupta, and C. Mukhopadhyay, “Direct Amide Bond Formation from Carboxylic Acids and Amines Using Activated Alumina Balls as a New, Convenient, Clean, Reusable and Low Cost Heterogeneous Catalyst,” Green Chemistry 14 (2012): 3220–29.
  • V. R. Pattabiraman and J. W. Bode, “Rethinking Amide Bond Synthesis,” Nature 480 (2011): 471–79.
  • C. L. Allen, M. Jonathan, and J. Williams, “Metal-Catalysed Approaches to Amide Bond Formation,” Chemical Society Reviews 40, no. 7 (2011): 3405–15.
  • J. Li, K. Subramaniam, D. Smith, J. X. Qiao, J. J. Li, J. Qian-Cutrone, J. F. Kadow, G. D. Vite, and B. C. Chen, “ AlMe(3)-Promoted Formation of Amides from Acids and Amines,” Organic Letters 14 (2012): 214–17.
  • B. K. Zambron, S. R. Dubbaka, D. Markovic, E. Moreno-Clavijo, and P. Vogel, “Amide Formation in One Pot from Carboxylic Acids and Amines via Carboxyl and Sulfinyl Mixed Anhydrides,” Organic Letters 15, no. 10 (2013): 2550–53.
  • B. N. C. Prichard, J. M. Cruickshank, and B. R. Graham, “Beta-Adrenergic Blocking Drugs in the Treatment of Hypertension,” Blood Pressure 10, no. 5–6 (2001): 366–86.
  • H. B. Fung and T. L. Doan, “Tinidazole: A Nitroimidazole Antiprotozoal Agent,” Clinical Therapeutics 27, no. 12 (2005): 1859–84.
  • C. R. Lambert, M. Wilhelm, H. Striebel, F. Kradolfer, and P. Schmidt, “Eine neue gegen Bilharziose und Amoebiase wirksame Verbindung,” Experientia 20, no. 8 (1964): 452–53.
  • Anon., Netherlands Patent 1967, 6, 614, 130; Chem. Abstr., 68:68976g (1968).
  • S. Bondock, A.-G. Tarhoni, and A. A. Fadda, “Heterocyclic Synthesis with 4-Benzoyl-1-Cyanoacetylthiosemicarbazide: Selective Synthesis of Some Thiazole, Triazole, Thiadiazine, Pyrrylthiazole, and Pyrazolo[1,5-a]Triazine Derivatives,” Monatshefte für Chemie 139, no. 2 (2008): 153–59.
  • A. A. Fadda, E. Abdel-Latif, and R. E. El-Mekawy, “Thiocarbamoyl in Organic Synthesis: Synthesis of Some New Arylazothiophene and Arylazopyrazole Derivatives,” Phosphorus, Sulfur, and Silicon and the Related Elements 183, no. 8 (2018): 1940–53.
  • A. A. Fadda, Kh. S. Mohamed, and N. M. Abdulaziz, “Synthesis of New Heterocyclic Rings Containing Benzothiazole Moiety,” Journal of Heterocyclic Chemistry 50, no. 3 (2013): 650–53.
  • A. A. Fadda, E. M. Afsah, and R. S. Awad, “Synthesis and Antimicrobial Activity of Some New Benzo and Naphthonitrile Derivatives,” European Journal of Medicinal Chemistry 60 (2013): 421–30.
  • J. Slatt, I. Romero, and J. Bergman, “Cyanoacetylation of Indoles, Pyrroles and Aromatic Amines with the Combination Cyanoacetic Acid and Acetic Anhydride,” Synthesis 16 (2004): 2760–65.
  • J. M. Carl, E. Lukas, C. W. Gary, and R. B. Ian, “Thiazole Formation through a Modified Gewald Reaction,” Beilstein Journal of Organic Chemistry 11 (2015): 875–83.
  • T. Wang, X.-G. Hung, J. Liu, B. Li, J.-J. Wu, K.-X. Chen, W.-L. Zhu, X.-Y. Xu, and B.-B. Zeng, “An Efficient One-Pot Synthesis of Substituted 2-Aminothiophenes via Three-Component Gewald Reaction Catalyzed by L-Proline,” Synlett 9 (2010): 1351–54.
  • A.A. Fadda, R. Hala, and K. Shimaa, “Utility of Thiocarbamoyl Moiety in Synthesis of Some New Sulphur Containing Heterocyclic Compounds and Evaluation of Their Antimicrobial Activity,” European Journal of Chemistry 5, no. 2 (2014): 296–304.
  • A. A. Fadda, E. Abdel-Latif, and R. E. El-Mekawy, “Synthesis of Some New Arylazothiophene and Arylazopyrazole Derivatives as Antitumor Agents,” Pharmacology & Pharmacy 3 (2012): 148–57.
  • S. I. El-Desoky, H. A. Etman, S. B. Bondock, A. A. Fadda, and M. A. Metwally, “Utility of Isothiocyanates in Heterocyclic Synthesis,” Sulfur Letters 25 (2002): 199–205.
  • A. K. Mukerjee and R. Ashare, “Isothiocyanates in the Chemistry of Heterocycles,” Chemical Reviews 91, no. 1 (1991): 1–24.
  • Fadda et al., “Synthesis of Some New Arylazothiophene and Arylazopyrazole Derivatives,” 148–57.
  • Ibid.
  • B. Roberta, B. Maurizio, C. Valentina, C. Isabella, T. Daniela, A. C. Rosa, L. Paolo, and I. Sandra, “Synthesis and Evaluation of the Antioxidant Activity of Lipophilic Phenethyl Trifluoroacetate Esters by In Vitro ABTS, DPPH and in Cell-Culture DCF Assays,” Molecules 23, no. 208 (2018): 1–14.
  • A. B. da Rocha, R. M. Lopes, and G. Schwartsmann, “Natural Products in Anticancer Therapy,” Current Opinion in Pharmacology 1, no. 4 (2001): 364–69.
  • A. A. Fadda and R. E. El-Mekawy, “Utility of Quaternary Ammonium Salts in Synthesis of Some Novel Cyanine Dyes as Potential Antibacterial and Antitumor Agents,” Dyes and Pigments 99, no. 2 (2013): 512–19.
  • A. El-Shafei, A. A. Fadda, S. Bondock, A. M. Khalil, and E. H. Tawfik, “Facile Synthesis, Pure DFT Calculations, and PM3 Semiempirical MO Method Validation of Regiospecificity of Novel 1,4-Dihydropyrido[2,3-d]Pyrimidine Derivatives,” Synthetic Communications 40 (2010): 2788–805.
  • L. Liu, M. S. Alam, and D. U. Lee, “Synthesis, Antioxidant Activity and Fluorescence Properties of Novel Europium Complexes with (E)-2- or 4-Hydroxy-N′-[(2-Hydroxynaphthalen-1-yl)Methylene]Benzohydrazide Schiff Base,” Bulletin of the Korean Chemical Society 33, no. 10 (2012): 3361–67.
  • T.A. Yousef, G.M. Abu El-Reash, and R.M. El Morshedy, “Quantum Chemical Calculations, Experimental Investigations and DNA Studies on (E)-2-((3-Hydroxynaphthalen-2-yl)Methylene)-N-(Pyridin-2-yl)Hydrazinecarbothioamide and Its Mn(II), Ni(II), Cu(II), Zn(II) and Cd(II) Complexes,” Polyhedron 45, no. 1 (2012): 71–85.
  • M. Aljahdali and A. A. El-Sherif, “Synthesis, Characterization, Molecular Modeling and Biological Activity of Mixed Ligand Complexes of Cu(II), Ni(II) and Co(II) Based on 1,10-Phenanthroline and Novel Thiosemicarbazone,” Inorganica Chimica Acta 407 (2013): 58–68.
  • B. Harsha, A. G. Silvia, B. Igor, M. Giuliano, A. S. Mariano, W. Mathias, and C. Matteo, “Bacterial Outer Membrane Porins as Electrostatic Nanosieves: Exploring Transport Rules of Small Polar Molecules,” ACS Nano 11, no. 6 (2017): 5465–73.
  • Fadda et al., “Synthesis and Antimicrobial Activity of Some New Benzo and Naphthonitrile Derivatives,” 421–30.
  • Fadda et al., “Synthesis of Some New Arylazothiophene and Arylazopyrazole Derivatives,” 148–57.
  • Ibid.
  • Materials Studio (Version 5.0) (San Diego, USA: Accelrys Software Inc., 2009).
  • H. N. Hafez, O. Kh. Al-Duaij, O. A.-R. Barakat, and A. El-Gazzar, “Design, Synthesis and Pharmacological Evaluation of New Nonsteroidal Anti-inflammatory Derived from 3-Aminobenzothieno[2,3-d]Pyrimidines,” International Journal of Organic Chemistry 3 (2013): 110–18.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.