128
Views
3
CrossRef citations to date
0
Altmetric
Articles

A Green, Novel and Efficient Protocol for the Preparation of Diverse 4H-Pyrans: The First Report on the Catalytic Activity of Water Extract of Elaeagnus angustifolia Leaves in Organic Reactions

, &
Pages 1524-1533 | Received 31 Jan 2018, Accepted 06 Dec 2018, Published online: 27 Feb 2019

References

  • Peirce, J. J., R. F. Weiner, and P. A. Vesilind, Enviromental Pollution and Control, 4th Ed. (Oxford, UK: Elsevier, 1998).
  • Ahluwalia, V. K., and M. Kidwai, New Trend in Green Chemistry (Netherlands, UK: Springer, 2004).
  • Anastas, P. T., and J. C. Warner, Green Chemistry: Theory and Practice (Oxford, UK: Oxford University Press, 1998).
  • Sheldon, R. A., I. W. C. E. Arends, and U. Hanefeld, Green Chemistry and Catalysis (Germany: Wiley-VCH, 2007).
  • Sheldon, R. A., “Fundamentals of Green Chemistry: Efficiency in Reaction Design,” Chemical Society Reviews 41 (2012): 1437–1451.
  • Kerton, F., and R. Marriott, Alternative Solvents for Green Chemistry (Netherlands, UK: Royal Society of Chemistry, 2013).
  • Shoda, S.-i., H. Uyama, J.-i. Kadokawa, S. Kimura, and S. Kobayashi, “Enzymes as Green Catalysts for Precision Macromolecular Synthesis,” Chemical Reviews 116 (2016): 2307–413.
  • Fallah, A., M. Tajbakhsh, H. Vahedi, and A. Bekhradnia, “Natural Phosphate as an Efficient and Green Catalyst for Synthesis of Tetraketone and Xanthene Derivatives,” Research on Chemical Intermediates 43 (2017): 29–43.
  • Sahu, P. K., P. K. Sahu, S. K. Gupta, D. D. Agarwal, “Chitosan: An Efficient, Reusable, and Biodegradable Catalyst for Green Synthesis of Heterocycles,” Industrial & Engineering Chemistry Research 53 (2014): 2085–91.
  • Zhaleh, S., N. Hazeri, and M. T. Maghsoodlou, “Green Protocol for Synthesis of 2,3-dihydroquinazolin-4(1H)-ones: Lactic Acid as Catalyst Under Solvent-Free Condition,” Research on Chemical Intermediates 42 (2016): 6381–90.
  • Yadav, G., and J. V. Mani, “Synthesis, Characterization and Antibacterial Studies of Some Isoniazid-Derived Schiff Bases,” International Journal of Science and Research 4 (2013): 121–7.
  • Kumar, A., G. Gupta, and S. Srivastava, “Diversity Oriented Synthesis of Pyrrolidines via Natural Carbohydrate Solid Acid Catalyst,” ACS Combinatorial Science 12 (2010): 458–62.
  • Chitale, S., J. S. Derasp, B. Hussain, K. Tanveer, and A. M. Beauchemin, “Carbohydrates as Efficient Catalysts for the Hydration of α-amino Nitriles,” Chemical Communictions 52 (2016): 13147–50.
  • Henderson, A. S., J. F. Bower, and M. C. Galan, “Carbohydrates as Enantioinduction Components in Stereoselective Catalysis,” Organic and Biomolecular Chemistry 14 (2016): 4008–17.
  • Sakthivel, K., W. Notz, T. Bui, and C. F. Barbas, “Amino Acid Catalyzed Direct Asymmetric Aldol Reactions: A Bioorganic Approach to Catalytic Asymmetric Carbon − Carbon Bond-Forming Reactions,” Journal of the American Chemical Society 123 (2001): 5260–7.
  • Kumar, A., and Akanksha, “Amino Acid Catalyzed Thio-Michael Addition Reactions,” Tetrahedron 63 (2007): 11086–92.
  • Paradowska, J., M. Stodulski, and J. Mlynarski, “Asymmetric Catalysis in Water Mediated by Amino Acids-Based Catalysts,” Angewandte Chemie 48 (2009): 4288–97.
  • Torbati, M., S. Asnaashari, and F. Heshmati Afshar, “Essential Oil from Flowers and Leaves of Elaeagnus angustifolia (elaeagnaceae): Composition, Radical Scavenging and General Toxicity Activities,” Advanced Pharmaceutical Bulletin 6 (2016): 163–169.
  • Wang, B., H. Qu, J. Ma, X. Sun, D. wang, Q. Zheng, and D. Xing, “Protective Effects of Elaeagnus angustifolia Leaf Extract Against Myocardial Ischemia/Reperfusion Injury in Isolated Rat Heart,” Journal of Organic Chemistry 2014 (2014): 6.
  • Farzaei, M. H., R. Bahramsoltani, Z. Abbasabadi, and R. Rahimi, “A Comprehensive Review on Phytochemical and Pharmacological Aspects of Elaeagnus angustifolia L.” Journal of Pharmacy and Pharmacology 67 (2015): 1467–80.
  • Hamidpour, R., S. Hamidpour, M. Hamidpour, M. Shahlari, M. Sohraby, N. Shahlari, and R. Hamidpour, “Russian Olive (Elaeagnus angustifolia): From a Variety of Traditional Medicinal Applications to its Novel Roles as Active Antioxidant, Anti-inflammatory, Anti-mutagenic and Analgesic Agent,” Journal of Traditional and Complementary Medicine 7 (2017): 24–9.
  • Wu, J. Y. C., W. F. Fong, J. X. Zhang, C. H. Leung, H. L. Kwong, M. S. Yang, D. Li, and H. Y. Cheung, “Reversal of Multidrug Resistance in Cancer Cells by Pyranocoumarins Isolated from Radix Peucedani,” European Journal of Pharmacology 473 (2003): 9–17.
  • Abd El-Wahab, A., “Synthesis, Reactions and Evaluation of the Antimicrobial Activity of Some 4-(p-Halophenyl)-4H-naphthopyran, Pyranopyrimidine and Pyranotriazolopyrimidine Derivatives” Pharmaceuticals 5 (2012): 745–57.
  • Sheverdov, V. P., A. Yu. Andreev, O. E. Nasakin, V. L. Gein, “Synthesis and Antiproliferative and Antimicrobial Activity of Methyl-6-amino-3-acyl-4-aryl-5-cyano-4H-pyran-2-carboxylates and Their Derivatives,” Pharmaceutical Chemistry Journal 48 (2014): 379–82.
  • Kumar, A., R. A. Maurya, S. A. Sharma, P. Ahmad, A. B. Singh, G. Bhatia, and A. K. Srivastava, “Pyranocoumarins: A New Class of Anti-hyperglycemic and Anti-dyslipidemic Agents.” Bioorganic & Medicinal Chemistry Letters 19 (2009): 6447–51.
  • Dung, T. T., S. C. Kim, B. C. Yoo, G. H. Sung, W. S. Yang, H. G. Kim, J. G. Park, M. H. Rhee, K. W. Park, K. Yoon, Y. Lee, S. Hong, J. H. Kim, and J. Y. Cho, “(5-Hydroxy-4-oxo-4H-pyran-2-yl)methyl 6-hydroxynaphthalene-2-carboxylate, A Kojic Acid Derivative, Inhibits Inflammatory Mediator Production via the Suppression of Syk/Src and NF-κB Activation,” International Immunopharmacology 20 (2014): 37–45.
  • Brahmachari, G., Green Synthetic Approaches for Biologically Relevant Heterocycles. Ch. 8 (Netherlands: Elsevier, 2015).
  • Amr, A.-G. E., A. M. Mohamed, S. F. Mohamed, N. A. Abdel-Hafez, and A. E.- F. G. Hammam, “Anticancer Activities of Some Newly Synthesized Pyridine, Pyrane, and Pyrimidine Derivatives,” Bioorganic & Medicinal Chemistry 14 (2006): 5481–8.
  • Kumar, D., V. B. Reddy, S. Sharad, U. Dube, and S. Kapur, “A Facile One-Pot Green Synthesis and Antibacterial Activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes,” European Journal of Medicinal Chemistry 44 (2009): 3805–9.
  • Smith, C. W., J. M. Bailey, M. E. J. Billingham, S. Chandrasekhar, C. P. Dell, A. K. Harvey, C. A. Hicks, A. E. Kingston, and G. N. Wishart, “The Anti-rheumatic Potential of a Series of 2,4-di-substituted-4H-naphtho[1,2-b]pyran-3-carbonitriles,” Bioorganic & Medicinal Chemistry 5 (1995): 2783–8.
  • Armesto, D., A. Albert, F. H. Cano, N. Martín, A. Ramos, M. Rodriguez, J. L. Segura, and C. Seoane, “A Study on the Scope of the Photochemical Ring Contraction of Substituted 2-amino-3-cyano-4H-pyrans to Cyclobutenes: Crystal Structure of 3-carbamoyl-3-cyano-1-ethoxycarbonyl-4-isopropyl-2-phenylcyclobutene,” Journal of the Chemical Society. Perkin Transactions 1 (1997): 3401–6.
  • Martínez-Grau, A., and J. Marco, “Friedländer Reaction on 2-amino-3-cyano-4H-pyrans: Synthesis of Derivatives of 4H-pyran [2,3-b] quinolone. New Tacrine Analogues,” Bioorganic & Medicinal Chemistry Letters 7 (1997): 3165–70.
  • Vodnala, S., A. K. D. Bhavani, R. Kamutam, V. G. M. Naidu, and P. Prabhakar, “DABCO-catalyzed One-Pot Three Component Synthesis of dihydropyrano[3,2-c]chromene Substituted Quinazolines and Their Evaluation Towards Anticancer Activity,” Bioorganic & Medicinal Chemistry Letters 26 (2016): 3973–7.
  • Brahmachari, G., and B. Banerjee, “Facile and One-Pot Access to Diverse and Densely Functionalized 2-amino-3-cyano-4H-pyrans and Pyran-Pnnulated Heterocyclic Scaffolds via an Eco-friendly Multicomponent Reaction at Room Temperature Using Urea as a Novel Organo-Catalyst,” ACS Sustainable Chemistry & Engineering 2 (2014): 411–22.
  • Upta, A., R. Jamatia, and A. K. Pal, “Ferrite-Supported Glutathione: An Efficient, Green Nano-organocatalyst for the Synthesis of Pyran Derivatives,” New Journal of Chemistry 39 (2015): 5636–42.
  • Kangani, M., N. Hazeri, and M. T. Maghsoodlou, “A Mild and Environmentally Benign Synthesis of Tetrahydrobenzo[b]pyrans and Pyrano[c]chromenes Using Pectin as a Green and Biodegradable Catalyst,” Journal of the Chinese Chemical Society 63 (2016): 896–901.
  • Wang, Y., H. Ye, G. Zuo, and J. Luo, “Synthesis of a Novel Poly (ethylene glycol) Grafted N,N-dimethylaminopyridine Functionalized Dicationic Ionic Liquid and its Application in One-Pot Synthesis of 3,4-dihydropyrano[3,2-c]chromene Derivatives in Water,” Journal of Molecular Liquids 212 (2015): 418–22.
  • Reddy, M. B. M., V. P. Jayashankara, and M. A. Pasha, “Glycine-Catalyzed Efficient Synthesis of Pyranopyrazoles via One-Pot Multicomponent Reaction,” Synthetic Communications 40 (2010): 2930–4.
  • Essamlali, Y., O. Amadine, H. Maati, K. Abdelouahdi, A. Fihri, M. Zahouily, R. S. Varma, and A. Solhy, “Highly Efficient One-Pot Three-Component Synthesis of Naphthopyran Derivatives in Water Catalyzed by Phosphates,” ACS Sustainable Chemistry & Engineering 1 (2013): 1154–9.
  • Pandit, K. S., P. V. Chavan, U. V. Desai, M. A. Kulkarni, P. P. Wadgaonkar, “Tris-hydroxymethylaminomethane (THAM): A Novel Organocatalyst for a Environmentally Benign Synthesis of Medicinally Important Tetrahydrobenzo[b]pyrans and Pyran-Annulated Heterocycles,” New Journal of Chemistry 39 (2015): 4452–63.
  • Shinde, S., S. Damate, S. Morbale, M. Patil, and S. S. Patil. “Aegle Marmelos in Heterocyclization: Greener, Highly Efficient, One-Pot Three-Component Protocol for the Synthesis of Highly Functionalized 4H-benzochromenes and 4H-chromenes,” RSC Advances 7 (2017): 7315–28.
  • Maleki, B. “Green Synthesis of bis-coumarin and dihydropyrano[3,2-c]chromene Derivatives Catalyzed by o-benzenedisulfonimide,” Organic Preparations and Procedures International 48 (2016): 303–18.
  • Yazdani-Elah-Abadi, A., M. T. Maghsoodlou, R. Mohebat, and R. Heydari, “Theophylline as a New and Green Catalyst for the One-Pot Synthesis of Spiro[benzo[a]pyrano[2,3-c]phenazine] and benzo[a]pyrano[2,3-c]phenazine Derivatives Under Solvent-Free Conditions,” Chinese Chemical Letters 28 (2017): 446–52.
  • Abbaspour-Gilandeh, E., M. Aghaei-Hashjin, A. Yahyazadeh, and H. Salemi, “(CTA)3[SiW12]–Li+–MMT: A Novel, Efficient and Simple Nanocatalyst for Facile and One-Pot Access to Diverse and Densely Functionalized 2-amino-4H-chromene Derivatives via an Eco-friendly Multicomponent Reaction in Water,” RSC Advances 6 (2016): 55444–62.
  • Khoobi, M., L. Ma’mani, F. Rezazadeh, Z. Zareie, A. Foroumadi, A. Ramazani, and A. Shafiee, “One-Pot Synthesis of 4H-benzo[b]pyrans and dihydropyrano[c]chromenes Using Inorganic–Organic Hybrid Magnetic Nanocatalyst in Water,” Journal of Molecular Catalysis A: Chemical 359 (2012): 74–80.
  • Niknam, K., A. Jamali, “Silica-Bonded N-Propylpiperazine Sodium n-Propionate as Recyclable Basic Catalyst for Synthesis of 3,4-Dihydropyrano[c]chromene Derivatives and Biscoumarins,” Chinese Journal of Catalysis 33 (2012): 1840–49.
  • Vafajoo, Z., H. Veisi, M. T. Maghsoodlou, and H. Ahmadian, “Electrocatalytic Multicomponent Assembling of Aldehydes, 4-hydroxycoumarin and Malononitrile: An Efficient Approach to 2-amino-5-oxo-4,5-dihydropyrano(3,2-c)chromene-3-carbonitrile Derivatives,” Comptes Rendus Chimie 17 (2014): 301–4.
  • Kangani, M., N. Hazeri, M. T. Maghsoodlou, K. Khandan-barani, M. Kheyrollahi, and F. Nezhad Shahrokhabadi, “Green Procedure for the Synthesis of 1,4-dihydropyrano[2,3-c]pyrazoles Using Saccharose,” Journal of the Iranian Chemical Society 12 (2015): 47–50.
  • Zolfigol, M. A., R. Ayazi-Nasrabadi, S. Baghery, V. Khakyzadeh, and S. Azizian, “Applications of a Novel Nano Magnetic Catalyst in the Synthesis of 1,8-dioxo-octahydroxanthene and dihydropyrano[2,3-c]pyrazole Derivatives,” Journal of Molecular Catalysis A: Chemical 418–419 (2016): 54–67.
  • Bhosale, V. N., J. A. Angulwar, G. S. Khansole, and G. S. Waghmare. “One-Pot Three-Component Condensation for the Synthesis of 1,4-dihydropyrano[2,3- c]pyrazoles Using Cesium Fluoride as an Efficient Catalyst,” Journal of Chemical and Pharmaceutical Research 6 (2014): 733–7.
  • Sohal, H. S., A. Goyal, R. Sharma, R. Khare, and S. Kumar, “Glycerol Mediated, One Pot, Multicomponent Synthesis of dihydropyrano[2,3-c]pyrazoles,” European Journal of Chemistry 4 (2013): 450–3.
  • Kangani, M., N. Hazeri, K. Khandan-Barani, M. Lashkari, and M. T. Maghsoodlou, “Lime Juice as an Efficient and Green Catalyst for the Synthesis of 6-amino-4-aryl-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile Derivatives,” Iranian Journal of Organic Chemistry 6 (2014): 1187–92.
  • Zhaleh, S., N. Hazeri, M. R. Faghihi, and M. T. Maghsoodlou, “Chitosan: A Sustainable, Reusable and Biodegradable Organocatalyst for Green Synthesis of 1,4-dihydropyridine Derivatives Under Solvent-Free Condition,” Research on Chemical Intermediates 42 (2016): 8069–81.
  • Kangani, M., M. T. Maghsoodlou, and N. Hazeri, “Vitamin B12: An Efficient Type Catalyst for the One-Pot Synthesis of 3,4,5-trisubstituted furan-2(5H)-ones and N-aryl-3-aminodihydropyrrol-2-one-4-carboxylates,” Chinese Chemical Letters 27 (2016): 66–70.
  • Yazdani-Elah-Abadi, A., R. Mohebat, and M. T. Maghsoodlou, “Theophylline as the Catalyst for the Diastereoselective Synthesis of trans-1,2-dihydrobenzo[a]furo[2,3-c]phenazines in Water,” RSC Advances 6 (2016): 84326–33.
  • Khan, S. U., A. U. Khan, A. U. Shah, S. M. Shah, S. Hussain, M. Ayaz, and S. Ayaz, “Heavy Metals Content, Phytochemical Composition, Antimicrobial and Insecticidal Evaluation of Elaeagnus angustifolia,” Toxicology and Industrial Health 32 (2016): 154–61.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.