114
Views
19
CrossRef citations to date
0
Altmetric
Articles

NiFe2O4@SiO2@amino Glucose Magnetic Nanoparticle as a Green, Effective and Magnetically Separable Catalyst for the Synthesis of Xanthene-ones under Solvent-free Condition

&
Pages 1539-1556 | Received 22 Aug 2018, Accepted 11 Dec 2018, Published online: 26 Feb 2019

References

  • J. M. Jamison, K. Krabill, A. Hatwalkar, E. Jamison, and C. C. Tsai, “Potentiation of the Antiviral Activity of Poly r(A-U) by Xanthene Dyes,” Cell Biology International Reports 14, no. 12 (1990): 1075–84.
  • K. Chibale, M. Visser, D. V. Schalkwyk, P. J. Smith, A. Saravanamuthu, and A. H. Fairlamb, “Exploring the Potential of Xanthene Derivatives as Trypanothione Reductase Inhibitors and Chloroquine Potentiating Agents,” Tetrahedron 59, no. 13 (2003): 2289–96.
  • C. G. Knight, and T. Stephens, “Xanthene-dye-labelled Phosphatidylethanolamines as Probes of Interfacial pH. Studies in Phospholipid Vesicles,” Biochemical Journal 258, no. 3 (1989): 683–7.
  • B. B. Bhowmik, and P. Ganguly, “Photophysics of Xanthene Dyes in Surfactant Solution,” Spectrochim. Acta A 61, no. 9 (2005): 1997–2003.
  • M. Ahmad, T. A. King, D.-K. Ko, B. H. Cha, and J. Lee, “Performance and Photostability of Xanthene and Pyrromethene Laser Dyes in Sol-gel Phases,” Journal of Physics D: Applied Physics 35, no. 13 (2002): 1473–6.
  • (a) A. Bekaert, J. Andrieux, and M. Plat, “New Total Synthesis of Bikaverin,” Tetrahedron Letters 33 (1992): 2805–6; (b) J. Sarma, and J. B. Baruah, “One Step Synthesis of Dibenzoxanthenes,” Dyes and Pigments 64 (2005): 91–2.
  • D. W. Knight, and P. B. Little, “The First High-yielding Benzyne Cyclisation Using a Phenolic Nucleophile: A New Route to Xanthenes,” Synlett 1998, no. 10 (1998): 1141–3.
  • (a) R. Vazquez, M. C. de la Fuente, L. Castedo, and D. Domnguez, “A Short Synthesis of (±)-Clavizepine,” Synlett (1994): 433–4; (b) H. Ishibashi, K. Takagaki, N. Imada, and M. Ikeda, “First Total Synthesis of the Benzopyranobenzazepine Alkaloid (±)-Clavizepine,” Synlett (1994): 49–50.
  • (a) A. Jha, J. Beal, “Convenient Synthesis of 12H-benzo[a]xanthenes from 2-Tetralone,” Tetrahedron Letters 45 (2004): 8999–9001. (b) P. Liu, J.-W. Hao, Sh.-J. Liang, G.-L. Liang, J.-Y. Wang, Z-H. Zhang, “Choline Chloride and Itaconic Acid-Based Deep Eutectic Solvent as an Efficient and Reusable Medium for the Preparation of 13-aryl-5H-dibenzo[b,i]xanthene-5,7,12,14(13H)-Tetraones,” Monatshefte für Chemie 147 (2016): 801–8.
  • C.-W. Kuo, and J.-M. Fang, “Synthesis of Xanthenes, Indanes, and Tetrahydro Naphthalenes via Intramolecularphenyl-Carbonyl Coupling Reactions,” Synthetic Communications 31, no. 6 (2001): 877–92.
  • R. N. Sen, and N. N. Sarkar, “The Condensation of Primary Alcohols with Resorcinol and Other Hydroxyl Aromatic Compounds,” Journal of the American Chemical Society 47, no. 4 (1925): 1079–91.
  • K. Ota, and T. Kito, “An Improved Synthesis of Dibenzoxanthene,” Bulletin of the Chemical Society of Japan 49, no. 4 (1976): 1167–8.
  • M. A. Ghasemzadeh, “Synthesis and Characterization of Fe3O4@SiO2 NPs as an Effective Catalyst for the Synthesis of Tetrahydrobenzo[a]xanthen-11-Ones,” Acta Chimica Slovenica 62, no. 4 (2015): 977–85.
  • (a) P. S. Kumar, B. Sunil Kumar, B. Rajitha, P. Narsimha Reddy, N. Sreenivasulu, and Y. Thirupathi Reddy, “A Novel One Pot Synthesis of 14-Aryl-14H-dibenzo[a,j]xanthenes Catalyzed by Selectfluor™ under solvent free conditions,” Arkivoc xii (2006): 46–50; (b) V. S. Patil, V. S. Padalkar, K. R. Phatangare, P. G. Umape, B. N. Borase, and Sekar, N. “Synthesis, Characterization, and Antibacterial Activity of Novel (1H‐Benzo[d]imidazole‐2‐yl)‐6‐(diethylamino)‐3H‐one‐xanthene, Phenoxazine, and Oxazine,” Journal of Heterocyclic Chemistry 52 (2015): 124–9.
  • M. M. Amini, Y. Fazaeli, Z. Yassaee, S. Feizi, and A. Bazgir, “Polytungstozincate Acid: A New and Efficient Catalyst for the Synthesis of Xanthenes under Solvent-free Conditions,” The Open Catalysis Journal 2, no. 1 (2009): 40–4.
  • J. Venu Madhav, B. Suresh Kuarm, and B. Rajitha, “Dipyridine Cobalt Chloride: A Novel and Efficient Catalyst for the Synthesis of 14-aryl 14H-dibenzo[a.j]xanthenes under Solvent-free Conditions,” Arkivoc ii (2008): 204–9.
  • Mi. Dabiri, M. Baghbanzadeh, M. S. Nikcheh, and E. Arzroomchilar, “Eco-friendly and Efficient One-pot Synthesis of Alkyl- or Aryl-14H-dibenzo[a,j]xanthenes in Water,” Bioorganic & Medicinal Chemistry Letters 18, no. 1 (2008): 436–8.
  • A. Zare, A. R. Moosavi-Zare, M. Merajoddin, M. A. Zolfigol, T. Hekmat-Zadeh, A. Hasaninejad, A. Khazaei, M. Mokhlesi, V. Khakyzadeh, F. Derakhshan-Panah, et al. “Ionic Liquid Triethylamine-bonded Sulfonic Acid {[Et3N–SO3H]Cl} as a Novel, highly Efficient and Homogeneous Catalyst for the Synthesis of β-Acetamido Ketones, 1,8-dioxo-octahydroxanthenes and 14-aryl-14H-dibenzo[a,j]Xanthenes,” Journal of Molecular Liquids 167, (2012): 69–7.
  • K. Rad-Moghadam, and S. C. Azimi, “Mg (BF4) 2 Doped in [BMIm][BF4]: a Homogeneous Ionic Liquid-catalyst for Efficient Synthesis of 1, 8-dioxo-octahydroxanthenes, decahydroacridines and 14-aryl-14H-dibenzo [a, j] Xanthenes,” Journal of Molecular Liquids 363, (2012): 465–9.
  • L. Z. Fekri, and H. Saeedi Fard, “1,4-Diazaniumbicyclo[2.2.2]octane Diacetate: As an Effective, New and Reusable Media for the Synthesis of 14-Aryl-14H-dibenzo[a,j]xanthenes,” Acta Chimica Slovenica 63, no. 2 (2016): 263–70.
  • (a) J. J. Li, W. Y. Tang, L. M. Lu, and W. K. Su, “Strontium Triflate Catalyzed One-pot Condensation of β-naphthol, Aldehydes and Cyclic 1,3-Dicarbonyl compounds,” Tetrahedron Letters 49 (2008): 7117–20; (b) P. Li, F. Ma, P. Wang, and Z. Zhang, “Highly Efficient Low Melting Mixture Catalyzed Synthesis of 1,8‐Dioxo‐dodecahydroxanthene Derivatives,” Chin. J. Chem. 31 (2013): 757–63. (c) Y. H. Liu, X.Y. Tao, L.Q. Lei, and Zh.-H. Zhang,” Fluoroboric Acid Adsorbed on Silica-Gel–Catalyzed Synthesis of 14-Aryl-14H-dibenzo[a,j]xanthene derivatives,” Synthetic Communications 39 (2009): 580–9; (d) Zh.-H. Zhang, X.-Y. Tao, “2,4,6-Trichloro-1,3,5-triazine-promoted Synthesis of 1,8-dioxo-octahydroxanthenes under solvent-free conditions,” Australian Journal of Chemistry 61 (2008): 77–9; (e) Zh.-H. Zhang, Y. H. Liu, “Antimony trichloride/SiO2 promoted synthesis of 9-ary-3,4,5,6,7,9-hexahydroxanthene-1,8-diones.” Catalysis Communications 9 (2008): 1715–19; (f) J.-J. Li, X.-Y. Tao, Zh.-H. Zhang, “An Effective Bismuth Trichloride-catalyzed Synthesis of 1,8-dioxo-octahydroxanthenes,” Phosphorus, Sulfur, and Silicon and the Related Elements 183 (2008): 1672–8; (g) H.-Y. Lu, J.-J. Li, Zh.-H. Zhang, “ZrOCl2·8H2O: A Highly Efficient Catalyst for the Synthesis of 1,8‐dioxo‐octahydroxanthene Derivatives under Solvent‐free Conditions,” Applied Organometallic Chemistry 23 (2009): 165–9.
  • H. J. Wang, X. Q. Ren, Y. Y. Zhang, and Z. H. Zhang, “Synthesis of 12-aryl or 12-alkyl-8,9,10,12-tetrahydrobenzo[α]xanthen-11-one Derivatives Catalyzed by Dodecatungstophosphoric Acid,” Journal of the Brazilian Chemical Society 20, no. 10 (2009): 1939–4.
  • G. C. Nandi, S. Samai, R. Kumar, and M. S. Singh, “An Efficient One-pot Synthesis of Tetrahydrobenzo[a]xanthene-11-one and Diazabenzo[a]anthracene-9,11-dione Derivatives under Solvent Free Condition,” Tetrahedron 65, no. 34 (2009): 7129–34.
  • N. Foroughifar, A. Mobinikhaledi, H. Moghanian, R. Mozafari, and H. R. M. Esfahani, “Ammonium Chloride–catalyzed One-pot Synthesis of Tetrahydrobenzo[α]xanthen-11-one Derivatives under Solvent-free Conditions,” Synthetic Communications 41, no. 18 (2011): 2663–73.
  • B. Das, K. Laxminarayana, M. Krishnaiah, and Y. Srinivas, “An Efficient and Convenient Protocol for the Synthesis of Novel 12-Aryl- or 12-Alkyl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one Derivatives,” Synlett 2007, no. 20 (2007): 3107–12.
  • J. M. Khurana, and D. Magoo, “pTSA-catalyzed One-pot Synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones in Ionic Liquid and Neat Conditions,” Tetrahedron Letters 50, no. 33 (2009): 4777–80.
  • (a) A. H. M. Elwahy, M. R.Shaaban, “Synthesis of Heterocycles and Fused Heterocycles Catalyzed by Nanomaterials,” RSC Advances 5 (2015): 75659–710; (b) M. Zhang, Y.-H. Liu, Z.-R. Shang, H.-Ch. Hu, and Z.-H. Zhang, “Supported Molybdenum on Graphene Oxide/Fe3O4: An Efficient, Magnetically Separable Catalyst for One-pot Construction of Spiro-oxindole Dihydropyridines in Deep Eutectic Solvent under Microwave Irradiation,” Catalysis Communications 88 (2017): 39–44; (c) M.-N. Chen, L.-P. Mo, Z.-Sh. Cui, and Zh.-H. Zhang, “Magnetic Nanocatalysts: Synthesis and Application in Multicomponent Reactions, ” Current Opinion in Green and Sustainable Chemistry 15 (2019): 27–34; (d) M. Zhang, P. Liu, Y.-H. Liu, Z.-R. Shang, H.-Ch. Hu, and Zh.-H. Zhang, “Magnetically Separable Graphene Oxide Anchored Sulfonic Acid: A Novel, Highly Efficient and Recyclable Catalyst for One-pot Synthesis of 3,6-di(pyridin-3-yl)-1H-pyrazolo[3,4-b]pyridine-5-carbonitriles in Deep Eutectic Solvent under Microwave Irradiation.” RSC Advances 6 (2016): 106160–70.
  • A. Elhampour, M. Malmir, E. Kowsari, F. BoorBoor Ajdari, and F. Nemati, “Ag-doped Nano Magnetic γ-Fe2O3@DA Core–shell Hollow Spheres: an Efficient and Recoverable Heterogeneous Catalyst for A3 and KA2 Coupling Reactions and [3 + 2] Cycloaddition,” RSC Advances 6, no. 99 (2016): 96623–34.
  • L. Z. Fekri, M. Nikpassand, and K. H. Pour, “Green Aqueous Synthesis of Mono, bis and Trisdihydropyridines Using Nano Fe3O4 under Ultrasound Irradiation,” Current Organic Synthesis 12, (2015): 76–9.
  • L. Zare Fekri, and R. Maleki, “KIT‐6 Mesoporous Silica‐coated Magnetite Nanoparticles: A Highly Efficient and Easily Reusable Catalyst for the Synthesis of Benzo[d]imidazole Derivatives,” Journal of Heterocyclic Chemistry 54, no. 2 (2017): 1167–71.
  • L. Zare Fekri, M. Nikpassand, and R. Maleki, “1, 4-Diazabicyclo [2.2. 2] octanium Diacetate: As an Effective, new and Reusable Catalyst for the Synthesis of Benzo [d] Imidazole,” Journal of Molecular Liquids 222, (2016): 77–81.
  • L. Zare, N. O. Mahmoodi, A. Yahyazadeh, M. Mamaghani, and K. Tabatabaeian, “An Efficient Chemo- and Regioselective Three-component Synthesis of Pyridazinones and Phthalazinones Using Activated KSF,” Chinese Chemical Letters 21, no. 5 (2010): 538–41.
  • M. Nikpassand, L. Z. Fekri, L. Karimian, and M. Rassa, “Synthesis of Biscoumarin Derivatives Using Nanoparticle Fe3O4 as an Efficient Reusable Heterogeneous Catalyst in Aqueous Media and Their Antimicrobial Activity,” Current Organic Synthesis 12, no. 3 (2015): 358–62.
  • L. Zare, N. Mahmoodi, A. Yahyazadeh, M. Mamaghani, and K. Tabatabaeian, “An Efficient One-pot Synthesis of Pyridazinones and Phthalazinones Using HY-Zeolite,” Journal of Heterocyclic Chemistry 48no. 4 (2011): 864–7.
  • M. Nikpassand, L. Z. Fekri, and S. Sanagou, “Green Synthesis of 2-hydrazonyl-4-phenylthiazoles Using KIT-6 Mesoporous Silica Coated Magnetite Nanoparticles,” Dyes and Pigments 136, (2017): 140–4.
  • S. Sagadevan, Z. Z. Chowdhury, and R. F. Rafique, “Preparation and Characterization of Nickel Ferrite Nanoparticles via co-precipitation Method,” Materials Research 21, (2018): e20160533.
  • M. Yarie, “Spotlight: Catalytic Anomeric Based Oxidation,” Iranian Journal of Catalysis 7, (2017): 85–8.
  • A. A. Taherpour, A. Yari, F. Ghasemhezaveh, and M. A. Zolfigol,” The First Principle Computational Study for the Competitive Mechanisms of Oxidative Aromatization of 2-substituted Imidazolines Using KMnO4/SiO2,” Journal of the Iranian Chemical Society 14, no. 12 (2017): 2485–93.
  • M. A. Zolfigol, A. Khazaei, S. Alaie, S. Baghery, F. Maleki, y Bayat, and A. Asgari, “Experimental and Theoretical Approving of Anomeric Based Oxidation in the Preparation of 2-sbstituted Benz-(Imida, oxa and Othia)-Zoles Using [2,6-DMPy-NO2]C(NO2)3 as a Novel Nano Molten Salt Catalyst,” RSC Advances 6no. 63 (2016): 58667–79.
  • A. Khazaei, M. A. Zolfigol, A. R. Moosavi-Zare, A. Zare, M. Khojasteh, Z. Asgari, V. Khakyzadeh, and A. Khalafi-Nezhad, “Organocatalyst Trityl Chloride Efficiently Promoted the Solvent-free Synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]-Xanthen-11-ones by in Situ Formation of Carbocationic System in Neutral Media,” Catalysis Communications 20, (2012): 54–7.
  • X. D. Jia, S. Y. Han, H. F. Duan, Y. J. Lin, J. G. Cao, D. P. Liang, and M. C. Wu, “Efficient One-pot Synthesis of 12-Aryl-8, 9, 10, 12-tetrahydrobenzo[a]xanthen-11-ones under Solvent-free Conditions,” Chemical Research in Chinese Universities 29, no. 1 (2013): 82–6.
  • J. M. Khurana, A. Lumb, A. Pandey, and D. Magoo, “Green Approaches for the Synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones in Aqueous Media and under Microwave Irradiation in Solventless Conditions,” Synthetic Communications 42, no. 12 (2012): 1796–803.
  • R.-Z. Wang, Li-F. Zhang, and Z.-S. Cui, “Iodine-Catalyzed Synthesis of 12-aryl-8,9,10,12-tetrahydro-benzo[a]xanthen-11-one Derivatives via Multicomponent Reaction,” Synthetic Communications 39, no. 12 (2009): 2101–7.
  • A. Hassankhani, E. Mosaddegh, and S. Y. Ebrahimipour, “H4SiW12O40 Catalyzed One-Pot Synthesis of 12-Aryl-8,9,10,12-tetrahydrobenzo[a] Xanthen-11-ones under Solvent-Free Conditions,” European Journal of Chemistry 9, no. 2 (2012): 786–90.
  • J. Safaei-Ghomi, and M. A. Ghasemzadeh, “A Simple and Efficient Synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones by ZnO Nanoparticles Catalyzed Three Component Coupling Reaction of Aldehydes, 2-naphthol and Dimedone,” South African Journal of Chemistry 67 (2014): 27–32.
  • H. A. Soliman, A. Y. Mubarak, A. El-Mekabati, and S. S. Elmorsy, “SiO2/ZnCl2-Catalyzed Heterocyclic Synthesis: Green, Rapid and Efficient One-Pot Synthesis of 14-H-dibenzo [a, j]Xanthenes, 1,8-Dioxo-octahydroxanthenes and 1,8-Dioxo-Decahydroacridines under Solvent-Free Conditions,” Chem. Sci. Trans 3, (2014): 819–25.
  • (a) L. Z. Fekri, M. Nikpassand, S. Pourmirzajani, and B. Aghazadeh, “Synthesis and Characterization of Amino Glucose-Functionalized Silica-coated NiFe2O4 Nanoparticles: A Heterogeneous, New and Magnetically Separable Catalyst for the Solvent-Free Synthesis of Pyrano[3,2-c]chromen-5(4H)-ones.” RSC Advances 8 (2018): 22313–20; (b) L. Z. Fekri, M. Nikpassand, S. Shariati, B. Aghazadeh, R. Zarkeshvari, and N. Norouz pour, “Synthesis and Characterization of Amino Glucose-Functionalized Silica-coated NiFe2O4 Nanoparticles: A Heterogeneous, New and Magnetically Separable Catalyst for the Solvent-free Synthesis of 2,4,5–Trisubstituted Imidazoles, Benzo[d]imidazoles, Benzo[d] oxazoles and Azo-linked benzo [d] oxazoles.” Journal of Organometallic Chemistry 871 (2018) 60–73.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.