476
Views
26
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of Acridinediones and Biscoumarins Using Fe3O4@SiO2@Ni–Zn–Fe LDH as an Efficient Magnetically Recoverable Mesoporous Catalyst

ORCID Icon &
Pages 15-32 | Received 05 Sep 2018, Accepted 07 Jan 2019, Published online: 04 Mar 2019

References

  • N. Mizuno, and M. Misono, “Heterogeneous Catalysis,” Chemical Reviews 98, no. 1 (1998): 199–218.
  • A. Corma, H. García, and F. X. Llabrés I Xamena, “Engineering Metal Organic Frameworks for Heterogeneous Catalysis,” Chemical Reviews 110, no. 8 (2010): 4606–55.
  • M. B. Gawande, R. K. Pandey, and R. V. Jayaram, “Role of Mixed Metal Oxides in Catalysis Science-versatile Applications in Organic Synthesis,” Catalysis Science & Technology 2, no. 6 (2012): 1113–25.
  • M. Gilanizadeh, and B. Zeynizadeh, “Binary Copper and Iron Oxides Immobilized on Silica-layered Magnetite as a New Reusable Heterogeneous Nanostructure Catalyst for the Knoevenagel Condensation in Water,” Research on Chemical Intermediates 44, no. 10 (2018): 6053–70.
  • B. Zeynizadeh, E. Gholamiyan, and M. Gilanizadeh, “Magnetically Recoverable CuFe2O4 Nanoparticles as an Efficient Heterogeneous Catalyst for Green Formylation of Alcohols,”Current Chemistry Letters 7, no. 4 (2018): 121–30.
  • M. Gilanizadeh, and B. Zeynizadeh, “Synthesis of Magnetic Fe3O4@SiO2@Cu-Ni-Fe-Cr LDH: An Efficient and Reusable Mesoporous Catalyst for Reduction and One-pot Reductive-acetylation of Nitroarenes,” Journal of the Iranian Chemical Society 15, no. 12 (2018): 2821–37.
  • Gilanizadeh, M., Zeynizadeh, B., and E. Gholamiyan. “Green formylation of alcohols catalyzed by magnetically nanoparticles of the core-shell Fe3O4@SiO2-SO3H.” Iran. J. Sci. Technol. T. A Sci. Iran: Springer International Publishing AG, (2018) (doi: 10.1007/s40995-018-0594-9).
  • L. Xiao, W. Ma, M. Han, and Z. Cheng, “The Influence of Ferric Iron in Calcined nano-Mg/Al Hydrotalcite on Adsorption of Cr (VI) from Aqueous Solution,” Journal of Hazardous Materials 186, no. 1 (2011): 690–8.
  • Rives, V. Layered Double Hydroxides: Present and Future (New York: Nova Science, 2001).
  • G. R. Williams, and D. O. Hare, “Towards Understanding, control and Application of Layered Double Hydroxide Chemistry,” Journal of Materials Chemistry 16, no. 30 (2006): 3065–74.
  • A. H. Lu, E. L. Salabas, and F. Schuth, “Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application,” Angewandte Chemie International Edition 46, no. 8 (2007): 1222–44.
  • M. B. Gawande, P. S. Branco, and R. S. Varma, “Nano-magnetite (Fe3O4) as a Support for Recyclable Catalysts in the Development of Sustainable Methodologies,” Chemical Society Reviews 42, no. 8 (2013): 3371–93.
  • S. Shylesh, V. Schünemann, and W. R. Thiel, “Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis,” Angewandte Chemie International Edition 49, no. 20 (2010): 3428–59.
  • T. Takemura, T. Kamo, E. Sakuno, S. Hiradate, and Y. Fujii, “Discovery of Coumarin as the Predominant Allelochemical in Gliricidia Sepium,”J. Tropical Forest Science 25, no. 2 (2013): 268–72.
  • I. Manolov, C. Maichle-Moessmer, I. Nicolova, and N. Danchev, “Synthesis and Anticoagulant Activities of Substituted 2,4-Diketochromans, Biscoumarins, and Chromanocoumarins,” Archiv der Pharmazie 339, no. 6 (2006): 319–26.
  • K. M. Khan, S. Iqbal, M. A. Lodhi, G. M. Maharvi, Z. Ullah, M. I. Choudhary, A. U. Rahman, and S. Perveen, “Biscoumarin: New Class of Urease Inhibitors; Economical Synthesis and Activity,” Bioorganic Medicinal Chemistry 12, no. 8 (2004): 1963–8.
  • J. H. Lee, H. B. Bang, S. Y. Han, and J. G. Jun, “An Efficient Synthesis of (+)-Decursinol from Umbelliferone,” Tetrahedron Letters 48, no. 16 (2007): 2889–92.
  • K. Tabatabaeian, H. Heidari, A. Khorshidi, M. Mamaghani, and N. O. Mahmoodi, “Synthesis of Biscoumarin Derivatives by the Reaction of Aldehydes and 4-hydroxycoumarin Using Ruthenium(III) chloride Hydrate as a Versatile Homogeneous Catalyst,” Journal of the Serbian Chemical Society 77, no. 4 (2012): 407–13.
  • N. Tavakoli-Hoseini, M. M. Heravi, F. F. Bamoharram, A. Davoodnia, and M. Ghassemzadeh, “An Unexpected Tetracyclic Product Isolated during the Synthesis of Biscoumarins Catalyzed by [MIM(CH2)4SO3H][HSO4]: Characterization and X-ray Crystal Structure of 7-(2-hydroxy-4-oxo-4H-chromen-3-yl)-6H,7H-chromeno[4,3-b]chromen-6-One,” Journal of Molecular Liquids 163, no. 3 (2011): 122–7.
  • P. Singh, P. Kumar, A. Katyal, R. Kalra, S. K. Dass, S. Prakash, and R. Chandra, “Phosphotungstic Acid: an Efficient Catalyst for the Aqueous Phase Synthesis of Bis-(4-hydroxycoumarin-3-yl)methanes.” Catal,” Catalysis Letters 134, no. 3–4 (2010): 303–8.
  • M. M. Heravi, F. Nahavandi, S. Sadjadi, H. A. Oskooie, and F. F. Bamoharram, “Efficient Synthesis of Bis-coumarins Using Silica-supported Preyssler Nanoparticles,”Synthetic Communications 40, no. 4 (2010): 498–503.
  • J. Albadi, A. Mansournezhad, and S. Salehnasab, “Green Synthesis of Biscoumarin Derivatives Catalyzed by Recyclable CuO-CeO2 Nanocomposite Catalyst in Water,” Research on Chemical Intermediates 41, no. 8 (2015): 5713–121.
  • B. Sadeghi, and T. Ziya, “A Fast, highly Efficient, and Green Protocol for Synthesis of Biscoumarins Catalyzed by Silica Sulfuric Acid Nanoparticles as a Reusable Catalyst,” Journal of Chemistry 2013, (2013): 5.
  • M. Nasr-Esfahani, Z. Rafiee, and H. Kashi, “Nanoparticles Tungstophosphoric Acid Supported on Polyamic Acid: catalytic Synthesis of 1,8-Dioxo-decahydroacridines and Bulky Bis(1,8-dioxo-decahydroacridine)s,” Journal of the Iranian Chemical Society 13, no. 8 (2016): 1449–61.
  • K. Palani, D. Thirumalai, P. Ambalavanan, M. N. Ponnuswamy, and V. T. Ramakrishnan, “Synthesis and Characterization of 9-(4-nitrophenyl)3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydro-1,8(2H,5H) Acridinedione and Its Methoxyphenyl Derivative,” Journal of Chemical Crystallography 35, no. 10 (2005): 751–60.
  • S. Tu, X. Zhang, F. Shi, T. Li, Q. Wang, X. Zhu, J. Zhang, and J. Xu, “One-pot Synthesis of Novel N-cyclopropyldecahydroacridine-1,8-dione Derivatives under Microwave Irradiation,” Journal of Heterocyclic Chemistry 42, no. 6 (2005): 1155–9.
  • M. Kawase, A. Shah, H. Gaveriya, N. Motohashi, H. Sakagami, A. Varga, and J. Molnar, “3,5-Dibenzoyl-1,4-dihydropyridines: Synthesis and MDR Reversal in Tumor Cells,” Bioorganic & Medicinal Chemistry 10, no. 4 (2002): 1051–5.
  • Muharrem Kaya, Erhan Basar, Emrah Çakir, Ekrem Tunca, and Metin Bülbül, “Synthesis and Characterization of Novel Dioxoacridine Sulfonamide Derivatives as New Carbonic Anhydrase Inhibitors,” Journal of Enzyme Inhibition and Medicinal Chemistry 27, no. 4 (2012): 509–14.
  • R. Ulus, I. Yeşildağ, M. Tanç, M. Bülbül, M. Kaya, and C. T. Supuran, “Synthesis of Novel Acridine and Bis Acridine Sulfonamides with Effective Inhibitory Activity against the Cytosolic Carbonic Anhydrase Isoforms II and VII,” Bioorganic & Medicinal Chemistry 21, no. 18 (2013): 5799–805.
  • G. W. Wang, and C. B. Miao, “Environmentally Benign One-pot Multi-component Approaches to the Synthesis of Novel Unsymmetrical 4-Arylacridinediones,” Green Chemistry 8, no. 12 (2006): 1080–5.
  • A. Zhu, R. Liu, C. Du, and L. Li, “Betainium-based Ionic Liquids Catalyzed Multicomponent Hantzsch Reactions for the Efficient Synthesis of Acridinediones,” RSC Advances 7, no. 11 (2017): 6679–84.
  • S. J. Yü, S. Wu, X. M. Zhao, and C. W. Lü, “Green and Efficient Synthesis of Acridine-1,8-diones and Hexahydroquinolines via a KH2PO4 Catalyzed Hantzsch-type Reaction in Aqueous Ethanol,” Research on Chemical Intermediates 43, no. 5 (2017): 3121–30.
  • M. Kiani, and M. Mohammadipour, “Fe3O4@SiO2-MoO3H Nanoparticles: A Magnetically Recyclable Nanocatalyst System for the Synthesis of 1,8-dioxo-decahydroacridine Derivatives,”RSC Advances 7, no. 2 (2017): 997–1007.
  • Y. L. N. Murthy, A. Rajack, M. T. Ramji, J. J. Babu, C. Praveen, and K. A. Lakshmi, “Design, solvent Free Synthesis, and Antimicrobial Evaluation of 1,4 Dihydropyridines,” Bioorganic & Medicinal Chemistry Letters 22, no. 18 (2012): 6016–23.
  • Y. B. Shen, and G. W. Wang, “Solvent-free Synthesis of Xanthenediones and Acridinediones,” ARKIVOC 16 (2008): 1–8.
  • D. Patil, D. Chandam, A. Mulik, P. Patil, S. Jagadale, R. Kant, V. Gupta, and M. Deshmukh, “Novel Brønsted Acidic Ionic Liquid ([CMIM][CF3COO]) Prompted Multicomponent Hantzsch Reaction for the Eco-friendly Synthesis of Acridinediones: An Efficient and Recyclable Catalyst.” Catalysis Letters 144, no. 5 (2014): 949–58.
  • H. Pamuk, B. Aday, F. Şen, and M. Kaya, “Pt NPs@GO as a Highly Efficient and Reusable Catalyst for One-pot Synthesis of Acridinedione Derivatives,” RSC Advances 5, no. 61 (2015): 49295–300.
  • R. Ulus, Y. Yildiz, S. Eriş, B. Aday, F. Şen, and M. Kaya, “Functionalized Multi‐walled Carbon Nanotubes (f‐MWCNT) as Highly Efficient and Reusable Heterogeneous Catalysts for the Synthesis of Acridinedione Derivatives,” Chemistry Select 1, no. 13 (2016): 3861–65.
  • B. Aday, Y. Yildiz, R. Ulus, S. Eris, F. Sen, and M. Kaya, “One-pot, efficient and Green Synthesis of Acridinedione Derivatives Using Highly Monodisperse Platinum Nanoparticles Supported with Reduced Graphene Oxide,” New Journal of Chemistry 40, no. 1 (2016): 748–54.
  • M. Gilanizadeh, and B. Zeynizadeh, “Synthesis and Characterization of the Immobilized Ni–Zn–Fe Layered Double Hydroxide (LDH) on Silica Coated Magnetite as a Mesoporous and Magnetically Reusable Catalyst for the Preparation of Benzylidenemalononitriles and Bisdimedones (tetraketones) under Green Conditions,” New Journal of Chemistry 42, no. 11 (2018): 8553–66.
  • X. Liu, Z. Ma, J. Xing, and H. Liu, “Preparation and Characterization of Amino-silane Modified Superparamagnetic Silica Nanospheres,” Journal of Magnetism and Magnetic Materials 270, no. 1–2 (2004): 1–6.
  • Y. Zhang, G. M. Zeng, L. Tang, D. L. Huang, X. Y. Jiang, and Y. N. Chen, “A Hydroquinone Biosensor Using Modified Core-shell Magnetic Nanoparticles Supported on Carbon Paste Electrode,” Biosensing Bioelectron 22, no. 9–10 (2007): 2121–6.
  • C. Busetto, G. D. Piero, G. Manara, F. Trifiro, and A. Vaccari, “Catalysts for Low Temperature Methanol Synthesis. Preparation of Cu-Zn-Al Mixed Oxides via Hydrotalcite-like Precursors,” Journal of Catalysis 85, no. 1 (1984): 260–6.
  • G. Y. Li, Y. R. Jiang, K. L. Huang, P. Ding, and L. L. Yao, “Kinetics of Adsorption of Saccharomyces cerevisiae Mandelated Dehydrogenase on Magnetic Fe3O4-chitosan Nanoparticles,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 320, no. 1–3 (2008): 11–8.
  • J. A. Lopez, F. González, F. A. Bonilla, G. Zambrano, and M. E. Gómez, “Synthesis and Characterization of Fe3O4 Magnetic Nanofluid,” Revista Latinoamericana de Metalurgia y Materiales 30 (2010): 60–6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.