289
Views
19
CrossRef citations to date
0
Altmetric
Research Articles

A Highly Efficient and Solvent-Free Approach for the Synthesis of Quinolines and Fused Polycyclic Quinolines Catalyzed by Magnetite Nanoparticle-Supported Acidic Ionic Liquid

, &
Pages 440-453 | Received 08 Jan 2019, Accepted 09 Mar 2019, Published online: 20 Apr 2019

References

  • P. Friedlaender, “Ueber o-Amidobenzaldehyde,” Berichte Der Deutschen Chemischen Gesellschaft 15, no. 2 (1882): 2572–5.
  • J. Marco-Contelles, E. Pérez-Mayoral, A. Samadi, M. D. C. Carreiras, and E. Soriano, “Recent Advances in the Friedländer Reaction,” Chemical Reviews 109, no. 6 (2009): 2652–71.
  • J. P. Michael, “Quinoline, Quinazoline and Acridone Alkaloids,” Natural Product Reports 25, no. 1 (2008): 166–87.
  • J. Wiesner, R. Ortmann, H. Jomaa, and M. Schlitzer, “New Antimalarial Drugs,” Angewandte Chemie International Edition 42, no. 43 (2003): 5274–93.
  • C. Fuchs, E. P. Mitchell, and P. M. Hoff, “Irinotecan in the Treatment of Colorectal Cancer,” Cancer Treatment Reviews 32, no. 7 (2006): 491–503.
  • M. Mizuno, M. Yamashita, Y. Sawai, K. Nakamoto, and M. Goto, “Syntheses of Metabolites of Ethyl 4-(3,4-Dimethoxyphenyl)-6,7-Dimethoxy-2-(1,2,4-Triazol-1-Ylmethyl)Quinoline-3-Carboxylate (TAK-603),” Tetrahedron 62, no. 37 (2006): 8707–14.
  • J. M. Elliott, R. W. Carling, M. Chambers, G. G. Chicchi, P. H. Hutson, A. B. Jones, A. MacLeod, R. Marwood, G. Meneses-Lorente, E. Mezzogori, et al. “N′,2-Diphenylquinoline-4-Carbohydrazide Based NK3 Receptor Antagonists,” Bioorganic & Medicinal Chemistry Letters 16, (2006): 5748–51.
  • M. Kidwai, K. R. Bhushan, P. Sapra, R. K. Saxena, and R. Gupta, “Alumina-Supported Synthesis of Antibacterial Quinolines Using Microwaves,” Bioorganic & Medicinal Chemistry 8, (2000): 69–72.
  • M. C. Lombard, D. D. N’Da, J. C. Breytenbach, P. J. Smith, and C. A. Lategan, “Artemisinin–Quinoline Hybrid-Dimers: Synthesis and In Vitro Antiplasmodial Activity,” Bioorganic & Medicinal Chemistry Letters 20, (2010): 6975–7.
  • K. Balamurugan, V. Jeyachandran, S. Perumal, T. H. Manjashetty, P. Yogeeswari, and D. Sriram, “A Microwave-Assisted, Facile, Regioselective Friedländer Synthesis and Antitubercular Evaluation of 2,9-Diaryl-2,3-Dihydrothieno-[3,2-b]Quinolines,” European Journal of Medicinal Chemistry 45, no. 2 (2010): 682–8.
  • D. Edmont, R. Rocher, C. Plisson, and J. Chenault, “Synthesis and Evaluation of Quinoline Carboxyguanidines as Antidiabetic Agents,” Bioorganic & Medicinal Chemistry Letters 10, (2000): 1831–4.
  • D. Dubé, M. Blouin, C. Brideau, C.-C. Chan, S. Desmarais, D. Ethier, J.-P. Falgueyret, R. W. Friesen, M. Girard, Y. Girard, et al. “Quinolines as Potent 5-Lipoxygenase Inhibitors: Synthesis and Biological Profile of L-746,530,” Bioorganic & Medicinal Chemistry Letters 8, (1998): 1255–60.
  • Y. Mikata, M. Yokoyama, S.-I. Ogura, I. Okura, M. Kawasaki, M. Maeda, and S. Yano, “Effect of Side Chain Location in (2-Aminoethyl)Aminomethyl-2-Phenylquinolines as Antitumor Agents,” Bioorganic & Medicinal Chemistry Letters 8, (1998): 1243–8.
  • A. Arcadi, M. Chiarini, S. Di Giuseppe, and F. Marinelli, “A New Green Approach to the Friedländer Synthesis of Quinolines,” Synlett 2003, (2003): 0203–6.
  • M. Dabiri, M. Baghbanzadeh, and M. S. Nikcheh, “Oxalic Acid: An Efficient and Cost-Effective Organic Catalyst for the Friedländer Quinoline Synthesis under Solvent-Free Conditions,” Monatshefte Für Chemie – Chemical Monthly 138, no. 12 (2007): 1249–52.
  • A. Shaabani, E. Soleimani, and Z. Badri, “Triflouroacetic Acid as an Efficient Catalyst for the Synthesis of Quinoline,” Synthetic Communications 37, no. 4 (2007): 629–35.
  • J. S. Yadav, P. Purushothama Rao, D. Sreenu, R. S. Rao, V. Naveen Kumar, K. Nagaiah, and A. R. Prasad, “Sulfamic Acid: An Efficient, Cost-Effective and Recyclable Solid Acid Catalyst for the Friedlander Quinoline Synthesis,” Tetrahedron Letters 46, no. 42 (2005): 7249–53.
  • G. C. Muscia, M. Bollini, J. P. Carnevale, A. M. Bruno, and S. E. Asís, “Microwave-Assisted Friedländer Synthesis of Quinolines Derivatives as Potential Antiparasitic Agents,” Tetrahedron Letters 47, no. 50 (2006): 8811–15.
  • P. G. Dormer, K. K. Eng, R. N. Farr, G. R. Humphrey, J. C. McWilliams, P. J. Reider, J. W. Sager, and R. P. Volante, “Highly Regioselective Friedländer Annulations with Unmodified Ketones Employing Novel Amine Catalysts: Syntheses of 2-Substituted Quinolines, 1,8-Naphthyridines, and Related Heterocycles,” The Journal of Organic Chemistry 68, no. 2 (2003): 467–77.
  • L. Strekowski, A. Czarny, and H. Lee, “The Friedländer Synthesis of 4-Perfluoroalkylquinolines,” Journal of Fluorine Chemistry 104, no. 2 (2000): 281–4.
  • G.-W. Wang, C.-S. Jia, and Y.-W. Dong, “Benign and Highly Efficient Synthesis of Quinolines from 2-Aminoarylketone or 2-Aminoarylaldehyde and Carbonyl Compounds Mediated by Hydrochloric Acid in Water,” Tetrahedron Letters 47, no. 7 (2006): 1059–63.
  • H. Amii, Y. Kishikawa, and K. Uneyama, “Rh(I)-Catalyzed Coupling Cyclization of N-Aryl Trifluoroacetimidoyl Chlorides with Alkynes: One-Pot Synthesis of Fluorinated Quinolines,” Organic Letters 3, no. 8 (2001): 1109–12.
  • Y. Watanabe, N. Suzuki, Y. Tsuji, S. C. Shim, and T-a Mitsudo, “The Transition Metal-Catalyzed N-Alkylation and N-Heterocyclization. A Reductive Transformation of Nitroarenes into (Dialkylamino)Arenes and 2,3-Dialkyl-Substituted Quinolines Using Aliphatic Aldehydes under Carbon Monoxide,” Bulletin of the Chemical Society of Japan 55, no. 4 (1982): 1116–20.
  • B. R. McNaughton, and B. L. Miller, “A Mild and Efficient One-Step Synthesis of Quinolines,” Organic Letters 5, no. 23 (2003): 4257–9.
  • J. Wang, X. Fan, X. Zhang, and L. Han, “Green Preparation of Quinoline Derivatives through FeCl3·6H2O Catalyzed Friedlander Reaction in Ionic Liquids,” Canadian Journal of Chemistry 82, no. 7 (2004): 1192–6.
  • C.-S. Jia, Y.-W. Dong, S.-J. Tu, and G.-W. Wang, “Microwave-Assisted Solvent-Free Synthesis of Substituted 2-Quinolones,” Tetrahedron 63, no. 4 (2007): 892–7.
  • G. Sabitha, R. S. Babu, B. V. Subba Reddy, and J. S. Yadav, “Microwave Assisted FriedläNder Condensation Catalyzed by Clay,” Synthetic Communications 29, no. 24 (1999): 4403–8.
  • M. R. P. Heravi, “An Efficient Synthesis of Quinolines Derivatives Promoted by a Room Temperature Ionic Liquid at Ambient Conditions under Ultrasound Irradiation via the Tandem Addition/Annulation Reaction of o-Aminoaryl Ketones with α-Methylene Ketones,” Ultrasonics Sonochemistry 16, no. 3 (2009): 361–6.
  • J. S. Yadav, B. V. S. Reddy, P. Sreedhar, R. S. Rao, and K. Nagaiah, “Silver Phosphotungstate: A Novel and Recyclable Heteropoly Acid for Friedländer Quinoline Synthesis,” Synthesis 2004, no. 14 (2004): 2381–5.
  • X. Zhang, X. Fan, J. Wang, and Y. Li, “A Novel Preparation of 4-Phenylquinoline Derivatives in Ionic Liquids,” Journal of the Chinese Chemical Society 51, no. 6 (2004): 1339–42.
  • G. Karthikeyan, and P. T. Perumal, “A Mild, Efficient and Improved Protocol for the Friedländer Synthesis of Quinolines Using Lewis Acidic Ionic Liquid,” Journal of Heterocyclic Chemistry 41, no. 6 (2004): 1039–41.
  • S. S. Palimkar, S. A. Siddiqui, T. Daniel, R. J. Lahoti, and K. V. Srinivasan, “Ionic Liquid-Promoted Regiospecific Friedlander Annulation: Novel Synthesis of Quinolines and Fused Polycyclic Quinolines,” The Journal of Organic Chemistry 68, no. 24 (2003): 9371–8.
  • B. Das, K. Damodar, N. Chowdhury, and R. A. Kumar, “Application of Heterogeneous Solid Acid Catalysts for Friedlander Synthesis of Quinolines,” Journal of Molecular Catalysis A: Chemical 274, no. 1–2 (2007): 148–52.
  • A. Shaabani, E. Soleimani, and Z. Badri, “Silica Sulfuric Acid as an Inexpensive and Recyclable Solid Acid Catalyzed Efficient Synthesis of Quinolines,” Monatshefte Für Chemie – Chemical Monthly 137, no. 2 (2006): 181–4.
  • M. A. Zolfigol, P. Salehi, M. Shiri, T. Faal Rastegar, and A. Ghaderi, “Silica Sulfuric Acid as an Efficient Catalyst for the Friedländer Quinoline Synthesis from Simple Ketones and Ortho-Aminoaryl Ketones Under Microwave Irradiation,” Journal of the Iranian Chemical Society 5, no. 3 (2008): 490–7.
  • M. Dabiri, S. C. Azimi, and A. Bazgir, “An Efficient and Rapid Approach to Quinolines via Friedländer Synthesis Catalyzed by Silica Gel Supported Sodium Hydrogen Sulfate under Solvent-Free Conditions,” Monatshefte Für Chemie – Chemical Monthly 138, no. 7 (2007): 659–61.
  • M. Narasimhulu, T. S. Reddy, K. C. Mahesh, P. Prabhakar, C. B. Rao, and Y. Venkateswarlu, “Silica Supported Perchloric Acid: A Mild and Highly Efficient Heterogeneous Catalyst for the Synthesis of Poly-Substituted Quinolines via Friedländer Hetero-Annulation,” Journal of Molecular Catalysis A: Chemical 266, no. 1–2 (2007): 114–17.
  • A. Shaabani, A. Rahmati, and Z. Badri, “Sulfonated Cellulose and Starch: New Biodegradable and Renewable Solid Acid Catalysts for Efficient Synthesis of Quinolines,” Catalysis Communications 9, no. 1 (2008): 13–16.
  • V. Polshettiwar, and R. S. Varma, “Green Chemistry by Nano-Catalysis,” Green Chemistry 12, (2010): 743–54.
  • V. Polshettiwar, J.-M. Basset, and D. Astruc, “Editorial: Nanoscience Makes Catalysis Greener,” ChemSusChem 5, no. 1 (2012): 6–8.
  • V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, and J.-M. Basset, “Magnetically Recoverable Nanocatalysts,” Chemical Reviews 111, no. 5 (2011): 3036–75.
  • C. Ó. Dálaigh, S. A. Corr, Y. Gun'ko, and S. J. Connon, “A Magnetic-Nanoparticle-Supported 4-N,N-Dialkylaminopyridine Catalyst: Excellent Reactivity Combined with Facile Catalyst Recovery and Recyclability,” Angewandte Chemie 119, (2007): 4407–10.
  • U. Laska, C. G. Frost, G. J. Price, and P. K. Plucinski, “Easy-Separable Magnetic Nanoparticle-Supported Pd Catalysts: Kinetics, Stability and Catalyst Re-Use,” Journal of Catalysis 268, no. 2 (2009): 318–28.
  • O. Gleeson, R. Tekoriute, Y. K. Gun'ko, and S. J. Connon, “The First Magnetic Nanoparticle-Supported Chiral DMAP Analogue: Highly Enantioselective Acylation and Excellent Recyclability,” Chemistry – A European Journal 15, no. 23 (2009): 5669–73.
  • Z. Zheng, J. Wang, M. Zhang, L. Xu, and J. Ji, “Magnetic Polystyrene Nanosphere Immobilized TEMPO: A Readily Prepared, Highly Reactive and Recyclable Polymer Catalyst in the Selective Oxidation of Alcohols,” ChemCatChem 5, no. 1 (2013): 307–12.
  • P. D. Stevens, G. Li, J. Fan, M. Yen, and Y. Gao, “Recycling of Homogeneous Pd Catalysts Using Superparamagnetic Nanoparticles as Novel Soluble Supports for Suzuki, Heck, and Sonogashira Cross-Coupling Reactions,” Chemical Communications 0, no. 35 (2005): 4435–7.
  • Z. Wu, Z. Li, G. Wu, L. Wang, S. Lu, L. Wang, H. Wan, and G. Guan, “Brønsted Acidic Ionic Liquid Modified Magnetic Nanoparticle: An Efficient and Green Catalyst for Biodiesel Production,” Industrial & Engineering Chemistry Research 53, (2014): 3040–6.
  • X. Zheng, S. Luo, L. Zhang, and J.-P. Cheng, “Magnetic Nanoparticle Supported Ionic Liquid Catalysts for CO2 cycloaddition Reactions,” Green Chemistry 11, no. 4 (2009): 455–8.
  • M. B. Gawande, A. K. Rathi, I. D. Nogueira, R. S. Varma, and P. S. Branco, “Magnetite-Supported Sulfonic Acid: A Retrievable Nanocatalyst for the Ritter Reaction and Multicomponent Reactions,” Green Chemistry 15, no. 7 (2013): 1895–9.
  • S. Natour, and R. Abu-Reziq, “Immobilization of Palladium Catalyst on Magnetically Separable Polyurea Nanosupport,” RSC Advances 4, no. 89 (2014): 48299–309.
  • H. N. Dadhania, D. K. Raval, and A. N. Dadhania, “Magnetically Retrievable Magnetite (Fe3O4) Immobilized Ionic Liquid: An Efficient Catalyst for the Preparation of 1-Carbamatoalkyl-2-Naphthols,” Catalysis Science & Technology 5, (2015): 4806–12.
  • J. Wang, S. Zheng, Y. Shao, J. Liu, Z. Xu, and D. Zhu, “Amino-Functionalized Fe3O4@ SiO2 Core–Shell Magnetic Nanomaterial as a Novel Adsorbent for Aqueous Heavy Metals Removal,” Journal of Colloid and Interface Science 349, no. 1 (2010): 293–9.
  • Y. Liu, P. Liu, Z. Su, F. Li, and F. Wen, “Attapulgite–Fe3O4 Magnetic Nanoparticles via co-Precipitation Technique,” Applied Surface Science 255, no. 5 (2008): 2020–5.
  • A. Bordoloi, S. Sahoo, F. Lefebvre, and S. Halligudi, “Heteropoly Acid-Based Supported Ionic Liquid-Phase Catalyst for the Selective Oxidation of Alcohols,” Journal of Catalysis 259, no. 2 (2008): 232–9.
  • K. Miyatake, H. Iyotani, K. Yamamoto, and E. Tsuchida, “Synthesis of Poly (Phenylene Sulfide Sulfonic Acid) via Poly (Sulfonium Cation) as a Thermostable Proton-Conducting Polymer,” Macromolecules 29, no. 21 (1996): 6969–71.
  • M. Barbero, S. Bazzi, S. Cadamuro, and S. Dughera, “o-Benzenedisulfonimide as a Reusable Brønsted Acid Catalyst for an Efficient and Facile Synthesis of Quinolines via Friedländer Annulation,” Tetrahedron Letters 51, no. 17 (2010): 2342–4.
  • M. Dabiri, and S. Bashiribod, “Phosphotungstic Acid: An Efficient, Cost-Effective and Recyclable Catalyst for the Synthesis of Polysubstituted Quinolines,” Molecules (Basel, Switzerland) 14, no. 3 (2009): 1126.
  • S. K. De, and R. A. Gibbs, “A Mild and Efficient One-Step Synthesis of Quinolines,” Tetrahedron Letters 46, no. 10 (2005): 1647–9.
  • S. Gladiali, G. Chelucci, M. S. Mudadu, M.-A. Gastaut, and R. P. Thummel, “Friedländer Synthesis of Chiral Alkyl-Substituted 1,10-Phenanthrolines,” The Journal of Organic Chemistry 66, no. 2 (2001): 400–5.
  • S. Ghassamipour, and A. R. Sardarian, “Friedländer Synthesis of Poly-Substituted Quinolines in the Presence of Dodecylphosphonic Acid (DPA) as a Highly Efficient, Recyclable and Novel Catalyst in Aqueous Media and Solvent-Free Conditions,” Tetrahedron Letters 50, no. 5 (2009): 514–9.
  • X.-L. Zhang, Q.-Y. Wang, S.-R. Sheng, Q. Wang, and X.-L. Liu, “Efficient Friedländer Synthesis of Quinoline Derivatives from 2-Aminoarylketones and Carbonyl Compounds Mediated by Recyclable PEG-Supported Sulfonic Acid,” Synthetic Communications 39, no. 18 (2009): 3293–304.
  • E. A. Fehnel, “Friedländer Syntheses with o-Aminoaryl Ketones. III. Acid-Catalyzed Condensations of o-Aminobenzophenone with Polyfunctional Carbonyl Compounds,” Journal of Heterocyclic Chemistry 4, no. 4 (1967): 565–70.
  • R. Leardini, D. Nanni, A. Tundo, G. Zanardi, and F. Ruggieri, “Annulation Reactions with Iron(III) Chloride: Oxidation of Imines,” The Journal of Organic Chemistry 57, no. 6 (1992): 1842–8.
  • R.-S. Hou, Wu J.-L, H.-T. Cheng, Y.-T. Xie, and L.-C. Chen, “Amberlyst-15-Catalyzed Novel Synthesis of Quinoline Derivatives in Ionic Liquid,” Journal of the Chinese Chemical Society 55, no. 4 (2008): 915–18.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.