117
Views
1
CrossRef citations to date
0
Altmetric
Letter

Quinoline-Based Polyazaheterocycles by a Hydrogen Peroxide-Mediated Isocyanide Insertion

, ORCID Icon, &
Pages 676-684 | Received 09 Dec 2018, Accepted 20 Mar 2019, Published online: 13 May 2019

References

  • A. Vasilev, T. Deligeorgiev, N. Gadjev, S. Kaloyanova, J. J. Vaquero, J. Alvarez-Builla, and A. G, Baeza, “Novel Environmentally Benign Procedures for the Synthesis of Styryl Dyes,” Dyes and Pigments 77, no. 3 (2008): 550–55; M. Shaikh, J. Mohanty, P. K. Singh, A. C. Bhasikuttan, R. N. Rajule, V. S. Satam, S. R. Bendre, V. R. Kanetkar, and H. Pal, “Contrasting Solvent Polarity Effect on the Photophysical Properties of Two Newly Synthesized Aminostyryl Dyes in the Lower and in the Higher Solvent Polarity Regions,” The Journal of Physical Chemistry A 114, no. 13 (2010): 4507–19.
  • J. C. Gustafsson, O. Inganäs, and A. M. Andersson, “Conductive Polyheterocycles as Electrode Materials in Solid State Electrochromic Devices,” Synthetic Metals 62, no. 1 (1994): 17–21; M. Mrsevic, D. Düsselberg, and C. Staudt, “Synthesis and Characterization of a Novel Carboxyl Group Containing (co) Polyimide with Sulfur in the Polymer Backbone,” Beilstein Journal of Organic Chemistry 8 (2012): 776–86; K. Sekine, F. Stuck, J. Schulmeister, T. Wurm, D. Zetschok, F. Rominger, M. Rudolph, and A. S. K. Hashmi “N-Heterocycle-Fused Pentalenes by a Gold-Catalyzed Annulation of Diethynyl-Quinoxalines and –Phenazines,” Chemistry – A European Journal 24, no. 48 (2018): 12515–18; Z. Zeng, H. Jin, M. Rudolph, F. Rominger, and A. S. K. Hashmi “Gold(III)-Catalyzed Site-Selective and Divergent Synthesis of 2-Aminopyrroles and Quinoline-Based Polyazaheterocycles” Angewandte Chemie International Edition 57, no. 50 (2018): 16549–53: Z. Zeng, H. Jin, X. Song, Q. Wang, M. Rudolph, F. Rominger and A. S. K. Hashmi “Gold-Catalyzed Intermolecular Cyclocarboamination of Ynamides with 1,3,5-Triazinanes: En Route to Tetrahydropyrimidines” Chemical Communications 53, no. 31, (2017): 4304–07.
  • Y. Feng, N. Tian, Y. Li, C. Jia, X. Li, L. Wang, and X. Cui, “Construction of Fused Polyheterocycles through Sequential [4 + 2] and [3 + 2] Cycloadditions,” Organic Letters 19, no. 7 (2017): 1658–61; T. H. Al-Tel, and R. A. Al-Qawasmeh, “Post Groebke–Blackburn Multicomponent Protocol: Synthesis of New Polyfunctional Imidazo[1,2-a]Pyridine and Imidazo[1,2-a]Pyrimidine Derivatives as Potential Antimicrobial Agents,” European Journal of Medicinal Chemistry 45, no. 12 (2010): 5848–55; C. Cheng, W. W. Chen, B. Xu, and M. H. Xu, “Intramolecular Cross Dehydrogenative Coupling of 4-Substituted Coumarins: Rapid and Efficient Access to Coumestans and Indole [3,2-c] Coumarins,” Organic Chemistry Frontiers 3, no. 9 (2016): 1111–15; G. M. Coppola, J. D. Fraser, G. E. Hardtmann, M. J. Shapiro “The Chemistry of 3‐Azaisotoic Anhydrides. Synthesis and Reactions of Polyaza Heterocycles” Journal of Heterocyclic Chemistry 22, no. 1 (1985): 193–206; K. M. Dawood and M. A. Raslan “Fused Polyaza‐heterocycles and 1,3,4‐Thiadiazoles via a Tricyano Synthon” Journal of Heterocyclic Chemistry 45, no. 1 (2008): 137–41; E. Bejan, H. A. Haddou, J. C. Daran, G. G. A. Balavoine “The Reaction of Enaminones with Carboxamidines: A Convenient Route for the Synthesis of Polyaza Heterocycles” Synthesis 27, no. 8 (1996): 1012–18.
  • F.-Q. He, X.-H. Liu, B.-L. Wang, and Z.-M. Li, “Synthesis and Biological Activities of Novel Bis‐Heterocyclic Pyrrodiazole Derivatives,” Heteroatom Chemistry 19, no. 1 (2008): 21–7; A. Andreani, M. Rambaldi, A. Leoni, A. Locatelli, F. Andreani, and J.-C. Gehret, “Synthesis of Imidazo [2,1-b] Thiazoles as Herbicides,” Pharmaceutica Acta Helvetiae 71, no. 4 (1996): 247–52.
  • R. M. Wilson, and S. J. Danishefsky, “On the Reach of Chemical Synthesis: Creation of a Mini‐Pipeline from an Academic Laboratory,” Angewandte Chemie International Edition 49, no. 35 (2010): 6032–56; D. Cornut, H. Lemoine, O. Kanishchev, E. Okada, F. Albrieux, A. H. Beavogui, A. L. Bienvenu, S. Picot, J. P. Bouillon, and M. Médebielle, “Incorporation of a 3-(2,2,2-Trifluoroethyl)-γ-Hydroxy-γ-Lactam Motif in the Side Chain of 4-Aminoquinolines. Syntheses and Antimalarial Activities,” Journal of Medicinal Chemistry 56, no. 1 (2013): 73–83; J. D. Gohil, H. B. Patel, and M. P. Patel, “Synthesis and Evaluation of New Chromene Based [1,8]Naphthyridines Derivatives as Potential Antimicrobial Agents,” RSC Advances 6, no. 78 (2016): 74726–33; R. Rohini, K. Shanker, P. M. Reddy, Y.-P. Ho, and V. Ravinder, “Mono and Bis-6-Arylbenzimidazo [1,2-c]Quinazolines: A New Class of Antimicrobial Agents,” European Journal of Medicinal Chemistry 44, no. 8 (2009): 3330–9; U. A. Kshirsagar, “Recent Developments in the Chemistry of Quinazolinone Alkaloids,” Organic & Biomolecular Chemistry 13, no. 36 (2015): 9336–52; A. S. K. Hashmi, “Gold-Catalyzed Organic Reactions” Chemical Reviews 107, no. 7 (2007): 3180–211; M. Rudolph, and A. S. K. Hashmi, “Heterocycles from gold catalysis” Chemical Communications 47, no. 23 (2016): 6536–44; D. Pflasterer, and A. S. K. Hashmi, “Gold Catalysis in Total Synthesis – Recent Achievements” Chemical Society Reviews 45, no. 5 (2016): 1331–67.
  • M. Shiri, M. A. Zolfigol, H. G. Kruger, and Z. Tanbakouchian, “Friedländer Annulation in the Synthesis of Azaheterocyclic Compounds,” Advances in Heterocyclic Chemistry 102 (2011): 139–227; J. Marco-Contelles, E. Pérez-Mayoral, A. Samadi, M. D. C. Carreiras, and E. Soriano, “Recent Advances in the Friedlander Reaction,” Chemical Reviews 109, no. 6 (2009): 2652–71; Z. Ma, Y. Hano, T. Nomura, and Y. Chen, “Novel Quinazoline–Quinoline Alkaloids with Cytotoxic and DNA Topoisomerase II Inhibitory Activities,” Bioorganic & Medicinal Chemistry Letters 14, no. 5 (2004): 1193–6; Y. Sawada, H. Kayakiri, Y. Abe, T. Mizutani, N. Inamura, M. Asano, C. Hatori, I. Aramori, T. Oku, and H. Tanaka, “Discovery of the First Non-Peptide Full Agonists for the Human Bradykinin B2 Receptor Incorporating 4-(2-Picolyloxy)Quinoline and 1-(2-Picolyl)Benzimidazole Frameworks,” Journal of Medicinal Chemistry 47, no. 11 (2004): 2853–63; P. Beagley, M. A. L. Blackie, K. Chibale, C. Clarkson, R. Meijboom, J. R. Moss, P. J. Smith, and H. Su, “Synthesis and Antiplasmodial Activity in Vitro of New Ferrocene–Chloroquine Analogues,” Dalton Transactions (2003): 3046–51; M. A. Khan, and J. F. da Rocha, “Pyrroloquinolines I. 1H-Pyrrolo[2,3-b]Quinolines,” Heterocycles 6, no. 8 (1977): 1229–46; F. He, B. M. Foxman, and B. B. Snider, “Total Syntheses of (−)-Asperlicin and (−)-Asperlicin C,” Journal of the American Chemical Society 120, no. 25 (1998): 6417–18; C.-W. Jao, W.-C. Lin, Y.-T. Wu, and P.-L. Wu, “Isolation, Structure Elucidation, and Synthesis of Cytotoxic Tryptanthrin Analogues from Phaius mishmensis,” Journal of Natural Products 71, no. 7 (2008): 1275–79; A. Servais, M. Azzouz, D. Lopes, C. Courillon, and M. Malacria, “Radical Cyclization of N‐Acylcyanamides: Total Synthesis of Luotonin A,” Angewandte Chemie International Edition 46, no. 4 (2007): 576–79; J. Zhou, and J. Fang, “One-Pot Synthesis of Quinazolinones via Iridium-Catalyzed Hydrogen Transfers,” The Journal of Organic Chemistry 76, no. 19 (2011): 7730–36; M. A. McGowan, C. Z. McAvoy, and S. L. Buchwald, “Palladium-Catalyzed N-Monoarylation of Amidines and a One-Pot Synthesis of Quinazoline Derivatives” Organic Letters 14, no. 14 (2012): 3800–3.
  • Y. Xia, Z. Y. Yang, M. J. Hour, S. C. Kuo, P. Xia, K. F. Bastow, Y. Nakanishi, P. Nampoothiri, T. Hackl, E. Hamel, and K. H. Lee, “Antitumor Agents. Part 204: 1 Synthesis and Biological Evaluation of Substituted 2-Aryl Quinazolinones,” Bioorganic & Medicinal Chemistry Letters 11, no. 9 (2001): 1193–6; S.-L. Cao, Y.-P. Feng, Y.-Y. Jiang, S.-Y. Liu, G.-Y. Ding, and R.-T. Li, “Synthesis and in Vitro Antitumor Activity of 4 (3H)-Quinazolinone Derivatives with Dithiocarbamate Side Chains,” Bioorganic & Medicinal Chemistry Letters 15, no. 7 (2005): 1915–17; M. Atanasova, S. Ilieva, and B. Galabov, “QSAR Analysis of 1,4-Dihydro-4-Oxo-1-(2-Thiazolyl)-1,8-Naphthyridines with Anticancer Activity,” European Journal of Medicinal Chemistry 42, no. 9 (2007): 1184–92.
  • J. F. Wolfe, T. L. Rathman, M. C. Sleevi, J. A. Campbell, and T. D. Greenwood, “Synthesis and Anticonvulsant Activity of Some New 2-Substituted 3-Aryl-4(3H)-Quinazolinones,” Journal of Medicinal Chemistry 33, no. 1 (1990): 161–66; S. Malik, R. S. Bahare, and S. A. Khan, “Design, Synthesis and Anticonvulsant Evaluation of N-(Benzo[d]thiazol-2-ylcarbamoyl)-2-Methyl-4-Oxoquinazoline-3(4H)-Carbothioamide Derivatives: a Hybrid Pharmacophore Approach,” European Journal of Medicinal Chemistry 67 (2013): 1–13.‏
  • O. Y. K. Goto, and T. Oe, PCT Int. Appl. WO 8401711, A1, 1984; V. Alagarsamy, and U. S. Pathak, “Synthesis and Antihypertensive Activity of Novel 3-Benzyl-2-Substituted-3H-[1,2,4]Triazolo[5,1-b]Quinazolin-9-ones,” Bioorganic & Medicinal Chemistry 15, no. 10 (2007): 3457–62.
  • P. M. S. Chauhan, and S. K. Srivastava, “Present Trends and Future Strategy in Chemotherapy of Malaria,” Current Medicinal Chemistry 8, no. 13 (2001): 1535–42; Z. Wang, M. Wang, X. Yao, Y. Li, J. Tan, L. Wang, W. Qiao, Y. Geng, Y. Liu, and Q. Wang, “Design, Synthesis and Antiviral Activity of Novel Quinazolinones,”European Journal of Medicinal Chemistry 53, (2012): 275–82.
  • Y.-L. Chen, K.-C. Fang, J.-Y. Sheu, S.-L. Hsu, and C.-C. Tzeng, “Synthesis and Antibacterial Evaluation of Certain Quinolone Derivatives,” Journal of Medicinal Chemistry 44, no. 14 (2001): 2374–77; P. Selvam, K. Girija, G. Nagarajan, and E. De Clercq, “Synthesis, Antibacterial and AntiHIV Activities of 3-(5-Amino-6-(2-3-Dichloro-Phenyl)-(1,2,4)Triazin-3-yl)-6,8-Dibromo-2-Substituted-3H-Quinozolin-4-One,” Indian Journal of Pharmaceutical Sciences 67, no. 4 (2005): 484–87.
  • K. S. Kumar, P. M. Kumar, K. A. Kumar, M. Sreenivasulu, A. A. Jafar, D. Rambabu, G. R. Krishna, C. M. Reddy, R. Kapavarapu, K. Shivakumar, et al. “A New Three-Component Reaction: Green Synthesis of Novel Isoindolo[2,1-a]Quinazoline Derivatives as Potent Inhibitors of TNF-α,” Chemical Communications 47, no. 17 (2011): 5010–2.
  • R. Qiao, L. Ye, K. Hu, S. Yu, W. Yang, M. Liu, J. Chen, J. Ding, and H. Wu, “Copper-Catalyzed C–O Bond Cleavage and Cyclization: Synthesis of Indazolo[3,2-b]Quinazolinones,” Organic & Biomolecular Chemistry 15, no. 10 (2017): 2168–73; M. Liu, M. Shu, C. Yao, G. Yin, D. Wang, and J. Huang, “Synthesis of Pyrido-Fused Quinazolinone Derivatives via Copper-Catalyzed Domino Reaction,” Organic Letters 18, no. 4 (2016): 824–27; F.-C. Jia, Z.-W. Zhou, C. Xu, Y.-D. Wu, and A.-X. Wu, “Divergent Synthesis of Quinazolin-4(3H)-Ones and Tryptanthrins Enabled by a tert-Butyl Hydroperoxide/K3PO4-Promoted Oxidative Cyclization of Isatins at Room Temperature,” Organic Letters 18, no. 12 (2016): 2942–45; P. K. Gupta, N. Yadav, S. Jaiswal, M. Asad, R. Kant, and K. Hajela, “Palladium‐Catalyzed Synthesis of Phenanthridine/Benzoxazine‐Fused Quinazolinones by Intramolecular C-H Bond Activation,” Chemistry – A European Journal 21, no. 38 (2015): 13210–15; J. Sun, Q. Tan, W. Yang, B. Liu, and B. Xu, “Copper‐Catalyzed Aerobic Oxidative Annulation and Carbon‐Carbon Bond Cleavage of Arylacetamides: Domino Synthesis of Fused Quinazolinones,” Advanced Synthesis & Catalysis 356, no. 2–3 (2014): 388–94; W. Yang, L. Ye, D. Huang, M. Liu, J. Ding, J. Chen, and H. Wu, “Copper-Catalyzed Intramolecular C–N Bond Formation Reaction of 3-Amino-2-(2-Bromophenyl)Dihydroquinazolinones: Synthesis of Indazolo [3, 2-b] Quinazolinones,” Tetrahedron 69, no. 46 (2013): 9852–6; I. Bouillon, and V. Krchňák, “Efficient Solid-Phase Synthesis of 3-Substituted-5-Oxo-5H-Thiazolo[2,3-b]-Quinazoline-8-Carboxamides under Mild Conditions with Two Diversity Positions,” Journal of Combinatorial Chemistry 9, no. 06 (2007): 912–15; D. J. Hart, and N. A. Magomedov, “Synthesis of ent-Alantrypinone,” Journal of the American Chemical Society 123, no. 25 (2001): 5892–9.
  • A. D. Sonawane, Y. B. Shaikh, R. D. Garud, and M. Koketsu, “Synthesis of Isoquinoline-Fused Quinazolinones through Ag (I)-Catalyzed Cascade Annulation of 2-Aminobenzamides and 2-Alkynylbenzaldehydes,” Synthesis 51, no. 02 (2019): 500–7; L.-S. Wei, G.-X. He, X.-F. Kong, C.-X. Pan, D.-L. Mo, and G.-F. Su, “Gold (III)-Catalyzed Selective Cyclization of Alkynyl Quinazolinone-Tethered Pyrroles: Synthesis of Fused Quinazolinone Scaffolds,” The Journal of Organic Chemistry 83, no. 12 (2018): 6719–27; S. Guo, J. Zhai, F. Wang, and X. Fan, “One-Pot Three-Component Selective Synthesis of Isoindolo[2, 1-a]Quinazoline Derivatives via a Palladium-Catalyzed Cascade Cyclocondensation/Cyclocarbonylation Sequence,” Organic & Biomolecular Chemistry 15, no. 17 (2017): 3674–80; H. Xu, and H. Fu, “Copper‐Catalyzed One‐Pot Synthesis of Imidazo/Benzoimidazoquinazolinones by Sequential Ullmann‐Type Coupling and Intramolecular C–H Amidation,” Chemistry – A European Journal 18, no. 4 (2012): 1180–6.
  • M. J. H. Worthington, R. L. Kucera, and J. M. Chalker, “Green Chemistry and Polymers Made from Sulfur,” Green Chemistry 19, no. 12 (2017): 2748–61; A. Mishra, C.-Q. Ma, and P. Bäuerle, “Functional Oligothiophenes: Molecular Design for Multidimensional Nanoarchitectures and Their Applications,” Chemical Reviews 109, no. 3 (2009): 1141–76; W. Jiang, Y. Li, and Z. Wang, “Heteroarenes as High Performance Organic Semiconductors,” Chemical Society Reviews 42, no. 14 (2013): 6113–27.‏
  • M. Feng, B. Tang, S. H. Liang, and X. Jiang, “Sulfur Containing Scaffolds in Drugs: Synthesis and Application in Medicinal Chemistry,” Current Topics in Medicinal Chemistry 16, no. 11 (2016): 1200–16; R. Suhas, S. Chandrashekar, and D. C. Gowda, “Synthesis of Uriedo and Thiouriedo Derivatives of Peptide Conjugated Heterocycles – A New Class of Promising Antimicrobials,” European Journal of Medicinal Chemistry 48 (2012): 179–91; A. Halama, J. Jirman, O. Boušková, P. Gibala, and K. Jarrah, “Improved Process for the Preparation of Montelukast: Development of an Efficient Synthesis, Identification of Critical Impurities and Degradants,” Organic Process Research & Development 14, no. 2 (2010): 425–31; S.-T. Huang, I.-J. Hsei, and C. Chen, “Synthesis and Anticancer Evaluation of Bis(Benzimidazoles), Bis(Benzoxazoles), and Benzothiazoles.” Bioorganic & Medicinal Chemistry 14, no. 17 (2006): 6106–19.
  • T. B. Nguyen, “Recent Advances in Organic Reactions Involving Elemental Sulfur,” Advanced Synthesis & Catalysis 359, no. 7 (2017): 1066–130; K. C. Nicolaou, C. R. H. Hale, C. Nilewski, and H. A. Ioannidou, “Constructing Molecular Complexity and Diversity: Total Synthesis of Natural Products of Biological and Medicinal Importance,” Chemical Society Reviews 41, no. 15 (2012): 5185–38.
  • M. Aoyagi, T. Kamoi, M. Kato, H. Sasako, N. Tsuge, and S. Imai, “Structure and Bioactivity of Thiosulfinates Resulting from Suppression of Lachrymatory Factor Synthase in Onion,” Journal of Agricultural and Food Chemistry 59, no. 20 (2011): 10893–900; V. Vaidya, K. U. Ingold, and D. A. Pratt, “Garlic: Source of the Ultimate Antioxidants-Sulfenic Acids,” Angewandte Chemie International Edition 48 (2009): 157–60.
  • P. M. Weintraub, M. T. Skoog, J. S. Nichols, J. S. Wiseman, E. W. Huber, L. E. Baugh, and A. M. Farrell, “Inhibition of 5‐Lipoxygenase by Substituted 3,4‐Dihydro‐2H‐1,4‐Thiazines,”Journal of Pharmaceutical Sciences 78, no. 11 (1989): 937–43.
  • R. K. Rawal, R. Tripathi, S. B. Katti, C. Pannecouque, and E. De Clercq, “Design, Synthesis, and Evaluation of 2-Aryl-3-Heteroaryl-1, 3-Thiazolidin-4-Ones as anti-HIV Agents,” Bioorganic & Medicinal Chemistry 15, no. 4 (2007): 1725–31.
  • H. Tawada, Y. Sugiyama, H. Ikeda, Y. Yamamoto, and K. Meguro, “Studies on Antidiabetic Agents. IX: A New Aldose Reductase Inhibitor, AD-5467, and Related 1,4-Benzoxazine and 1,4-Benzothiazine Derivatives: Synthesis and Biological Activity,” Chemical & Pharmaceutical Bulletin 38, 5 (1990): 1238–45.
  • M. V. Diurno, O. Mazzoni, E. Piscopo, A. Calignano, F. Giordano, and A. Bolognese, “Synthesis and Antihistaminic Activity of Some Thiazolidin-4-Ones,” Journal of Medicinal Chemistry 35, no. 15 (1992): 2910–2.
  • M. Koketsu, K. Tanaka, Y. Takenaka, C. D. Kwong, and H. Ishihara, “Synthesis of 1,3-Thiazine Derivatives and Their Evaluation as Potential Antimycobacterial Agents,” European Journal of Pharmaceutical Sciences 15, no. 3 (2002): 307–10.
  • G. Dumonteil, M.-A. Hiebel, M.-C. Scherrmann, and S. Berteina-Raboin, “Iodine-Catalyzed Formation of Substituted 2-Aminobenzothiazole Derivatives in PEG 400,”RSC Advances 6, no. 77 (2016): 73517–21.
  • T. Vlaar, R. C. Cioc, P. Mampuys, B. U. W. Maes, R. V. A. Orru, and E. Ruijter, “Sustainable Synthesis of Diverse Privileged Heterocycles by Palladium‐Catalyzed Aerobic Oxidative Isocyanide Insertion,” Angewandte Chemie International Edition 51, no. 52 (2012): 13058–61; T.-H. Zhu, X.-P. Xu, J.-J. Cao, T.-Q. Wei, S.-Y. Wang, and S.-J. Ji, “Cobalt (II)‐Catalyzed Isocyanide Insertion Reaction with Amines under Ultrasonic Conditions: A Divergent Synthesis of Ureas, Thioureas and Azaheterocycles,” Advanced Synthesis & Catalysis 356, no. 2–3 (2014): 509–18; T.-H. Zhu, S.-Y. Wang, G.-N. Wang, and S.-J. Ji, “Cobalt‐Catalyzed Oxidative Isocyanide Insertion to Amine‐Based Bisnucleophiles: Diverse Synthesis of Substituted 2‐Aminobenzimidazoles, 2‐Aminobenzothiazoles, and 2‐Aminobenzoxazoles,” Chemistry – A European Journal 19, no. 19 (2013): 5850–3; G.-N. Wang, T.-H. Zhu, S.-Y. Wang, T.-Q. Wei, S.-J. Ji, “NiCl2-Catalyzed Cascade Reaction of Isocyanides with Functionalized Anilines,” Tetrahedron 70, no. 43 (2014): 8079–83; V. N. Bochatay, P. J. Boissarie, J. A. Murphy, C. J. Suckling, and S. Lang, “Mechanistic Exploration of the Palladium-Catalyzed Process for the Synthesis of Benzoxazoles and Benzothiazoles,” The Journal of Organic Chemistry 78, no. 4 (2013): 1471–7.
  • P. Salehi, and M. Shiri, “Palladium‐Catalyzed Highly Regioselective Synthesis of 3‐(Hetero)Arylpropynamides from Gem‐Dibromoalkenes and Isocyanides,” Advanced Synthesis & Catalysis 361, no. 1 (2019): 118–25; M. Shiri, M. Ranjbar, Z. Yasaei, F. Zamanian, and B. Notash, “Palladium-Catalyzed Tandem Reaction of 2-Chloroquinoline-3-Carbaldehydes and Isocyanides,” Organic & Biomolecular Chemistry 15, no. 47 (2017): 10073–81; M. Shiri, Z. Faghihi, H. A. Oskouei, M. M. Heravi, S. Fazelzadeh, and B. Notash, “The Synthesis of Iminothiophenone-Fused Quinolines and Evaluation of Their Serendipitous Reactions,” RSC Advances 6, no. 95 (2016): 92235–40; M. Shiri, B. Farajpour, Z. Bozorgpour-Savadjani, S. A. Shintre, N. A. Koorbanally, H. G. Kruger, and B. Notash, “Transition-Metal Free Highly Selective Aerobic Oxidation of Hindered 2-Alkylindoles,” Tetrahedron 71, no. 34 (2015): 5531–7; M. Shiri, S. Z. Mirpour-Marzoni, Z. Bozorgpour-Savadjani, B. Soleymanifard, and H. G. Kruger, “Base-Catalyzed Cyclization of Ugi-Adducts to Substituted Indolyl Based γ-Lactams,” Monatshefte für Chemie-Chemical Monthly 145, no. 12 (2014): 1947–52.
  • Q. Chen, X. Wang, C. Wen, Y. Huang, X. Yan, and J. Zeng, “Cs2CO3-Promoted Cross-Dehydrogenative Coupling of Thiophenols with Active Methylene Compounds,” RSC Advances 7, no. 63 (2017): 39758–61.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.