193
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Magnetically Recoverable Graphene-Based Nanoparticles for the One-Pot Synthesis of Acridine Derivatives under Solvent-Free Conditions

, &
Pages 746-760 | Received 27 Feb 2019, Accepted 03 May 2019, Published online: 23 Jul 2019

References

  • R. Ulus, Y. Yıldız, S. Eriş, B. Aday, F. Şen, and M. Kaya, “Functionalized Multi‐Walled Carbon Nanotubes (f‐MWCNT) as Highly Efficient and Reusable Heterogeneous Catalysts for the Synthesis of Acridinedione Derivatives,” ChemistrySelect 1, no. 13 (2016): 3861–5.
  • B. Aday, Y. Yıldız, R. Ulus, S. Eris, F. Sen, and M. Kaya, “One-Pot, Efficient and Green Synthesis of Acridinedione Derivatives Using Highly Monodisperse Platinum Nanoparticles Supported with Reduced Graphene Oxide,” New Journal of Chemistry 40, no. 1 (2016): 748–54.
  • T. Demirci, B. Çelik, Y. Yıldız, S. Eriş, M. Arslan, F. Sen, and B. Kilbas, “One-Pot Synthesis of Hantzsch Dihydropyridines Using a Highly Efficient and Stable PdRuNi@GO Catalyst,” RSC Advances 6, no. 80 (2016): 76948–56.
  • T. Zarganes‐Tzitzikas, A. L. Chandgude, and A. Dömling, “Multicomponent Reactions, Union of MCRs and Beyond,” The Chemical Record 15, (2015): 981–96.
  • M. R. Mousavi, M. T. Maghsoodlou, and S. M. Habibi-Khorassani, “One-Pot Diastreoselective Synthesis of Highly Functionalized Cyclohexenones: 2-Oxo-N,4,6-Triarylcyclohex-3-Enecarboxamides,” Molecular Diversity 18, no. 4 (2014): 821–8.
  • S. V. Goswami, P. B. Thorat, and S. R. Bhusare, “An Efficient One-Pot Multi-Component Synthesis of Highly Functionalized Piperidines,” Heterocyclic Communications 18, (2012): 245–8.
  • A. Dömling, and I. Ugi, “Multicomponent Reactions with Isocyanides,”Angewandte Chemie (International ed. in English) 39, no. 18 (2000): 3168–210.
  • P. A. Clarke, S. Santos, and W. H. C. Martin, “Combining Pot, Atom and Step Economy (PASE) in Organic Synthesis. Synthesis of Tetrahydropyran-4-Ones,” Green Chemistry 9, no. 5 (2007): 438–40.
  • T. Lohar, S. Jadhav, A. Kumbhar, A. Mane, and R. Salunkhe, “Bis-Amino Methylation for the Synthesis of Spiro-Fused Piperidines Using Iron(III) Trifluroacetate in Aqueous Micellar Medium,” Research on Chemical Intermediates 42, no. 6 (2016): 5329–38.
  • R. Velu, E. J. P. Malar, V. T. Ramakrishnan, and P. Ramamurthy, “Acridinedione-Functionalized Gold Nanoparticles and Model for the Binding of 1,3-Dithiol Linked Acridinedione on Gold Clusters,” Tetrahedron Letters 51, no. 43 (2010): 5680–5.
  • K. Venkatesan, S. S. Pujari, and K. V. Srinivasan, “Proline-Catalyzed Simple and Efficient Synthesis of 1,8-Dioxo-Decahydroacridines in Aqueous Ethanol Medium,” Synthetic Communications 39, no. 2 (2008): 228–41.
  • B. Zhang, X. Li, B. Li, C. Gao, Y. Jiang, “Acridine Its, and Derivatives “A Patent Review (2009–2013),”Expert Opinion on Therapeutic Patents 24, no. 6 (2014): 647–64.
  • İ. Esirden, M. Tanç, C. T. Supuran, and M. Kaya, “Microwave Assisted Synthesis of Novel Tetrazole/Sulfonamide Derivatives Based on Octahydroacridine, Xanthene and Chromene Skeletons as Inhibitors of the Carbonic Anhydrases Isoforms I, II, IV and VII,” Bioorganic & Medicinal Chemistry Letters 27, (2017): 86–9.
  • S. Hassan, D. Laryea, H. Mahteme, J. Felth, M. Fryknäs, W. Fayad, S. Linder, L. Rickardson, J. Gullbo, W. Graf, et al. “Novel Activity of Acriflavine against Colorectal Cancer Tumor Cells,” Cancer Science 102, no. 12 (2011): 2206–13.
  • G. Cholewiński, K. Dzierzbicka, and A. M. Kołodziejczyk, “Natural and Synthetic Acridines/Acridones as Antitumor Agents: Their Biological Activities and Methods of Synthesis,” Pharmacological Reports 63, no. 2 (2011): 305–36.
  • M. R. Galdino-Pitta, M. G. R. Pitta, M. C. A. Lima, L. S. Galdino, and R. I. Pitta, “Niche for Acridine Derivatives in Anticancer Therapy,” Mini Reviews in Medicinal Chemistry 13, no. 9 (2013): 1256–71.
  • S. A. Gamage, J. A. Spicer, G. J. Atwell, G. J. Finlay, B. C. Baguley, and W. A. Denny, “Structure-Activity Relationships for Substituted Bis(Acridine-4-Carboxamides): A New Class of Anticancer Agents,” Journal of Medicinal Chemistry 42, no. 13 (1999): 2383–93.
  • S. Dollinger, S. Löber, R. Klingenstein, C. Korth, and P. Gmeiner, “A Chimeric Ligand Approach Leading to Potent Antiprion Active Acridine Derivatives: Design, Synthesis, and Biological Investigations,” Journal of Medicinal Chemistry 49, no. 22 (2006): 6591–5.
  • M. Kaya, Y. Yıldırır, and G. Y. Çelik, “Synthesis, Characterization, and in Vitro Antimicrobial and Antifungal Activity of Novel Acridines,” Pharmaceutical Chemistry Journal 48, no. 11 (2015): 722–6.
  • J. Karolak‐ Wojciechowska, A. Mrozek, P. Amiel, P. Brouant, and J. Barbe, “A Potential Antiprotozoal Drug Containing Acridine and Thiadiazole Moieties,” Acta Crystallographica Section C Crystal Structure Communications 52, (1996): 2939–41.
  • S. M. Sondhi, G. Bhattacharjee, R. K. Jameel, R. Shukla, R. Raghubir, O. Lozach, and L. Meijer, “Antiinflammatory, Analgesic and Kinase Inhibition Activities of Some Acridine Derivatives,” Open Chemistry 2, (2004): 1–15.
  • S. Hamulakova, J. Imrich, L. Janovec, P. Kristian, I. Danihel, O. Holas, M. Pohanka, S. Böhm, M. Kozurkova, and K. Kuca, “Novel Tacrine/Acridine Anticholinesterase Inhibitors with Piperazine and Thiourea Linkers,” International Journal of Biological Macromolecules 70, (2014): 435–9.
  • M. Wainwright, “Acridine-a Neglected Antibacterial Chromophore,” Journal of Antimicrobial Chemotherapy 47, no. 1 (2001): 1–13.
  • F. Charmantray, and A. Martelli, “Interest of Acridine Derivatives in the Anticancer Chemotherapy,” Current Pharmaceutical Design 7, (2001): 1703–24.
  • M. Kaya, Y. Yıldırır, and G. Y. Çelik, “Synthesis and Antimicrobial Activities of Novel Bisacridine-1,8-Dione Derivatives,” Medicinal Chemistry Research 20, no. 3 (2011): 293–9.
  • R. P. Tripathi, S. S. Verma, J. Pandey, K. C. Agarwal, V. Chaturvedi, Y. K. Manju, A. K. Srivastva, A. Gaikwad, and S. Sinha, “Search of Antitubercular Activities in Tetrahydroacridines: Synthesis and Biological Evaluation,” Bioorganic & Medicinal Chemistry Letters 16, (2006): 5144–7.
  • A. Kumar, K. Srivastava, S. R. Kumar, S. K. Puri, and P. M. S. Chauhan, “Synthesis of 9-Anilinoacridine Triazines as New Class of Hybrid Antimalarial Agents,” Bioorganic & Medicinal Chemistry Letters 19, (2009): 6996–9.
  • X. Yu, F. Ramiandrasoa, L. Guetzoyan, B. Pradines, E. Quintino, D. Gadelle, P. Forterre, T. Cresteil, J. Mahy, and S. Pethe, “Synthesis and Biological Evaluation of Acridine Derivatives as Antimalarial Agents,”ChemMedChem 7, no. 4 (2012 587–605.
  • M. Tonelli, G. Vettoretti, B. Tasso, F. Novelli, V. Boido, F. Sparatore, B. Busonera, A. Ouhtit, P. Farci, S. Blois, et al. “Acridine Derivatives as anti-BVDV Agents,” Antiviral Research 91, no. 2 (2011): 133–41.
  • M. Hong, and G. Xiao, “FSG-Hf (NPf2)4 Catalyzed, Environmentally Benign Synthesis of 1,8-Dioxo-Decahydroaridines in Water–Ethanol,” Journal of Fluorine Chemistry 144, (2012): 7–9.
  • G. Sabitha, G. S. K. K. Reddy, C. S. Reddy, and J. S. Yadav, “A Novel TMSI-Mediated Synthesis of Hantzsch 1,4-Dihydropyridines at Ambient Temperature,” Tetrahedron Letters 44, no. 21 (2003): 4129–31.
  • A. Poursattar Marjani, J. Khalafy, M. Chitan, and S. Mahmoodi, “Microwave-Assisted Synthesis of Acridine-1,8(2H,5H)-Diones via a One-Pot, Three Component Reaction,” Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 36, (2017): 1–6.
  • A. Işık, B. Aday, R. Ulus, and M. Kaya, “One-Pot, Facile, Highly Efficient, and Green Synthesis of Acridinedione Derivatives Using Vitamin B1,” Synthetic Communications 45, no. 24 (2015): 2823–31.
  • M. Ghashang, S. S. Mansoor, and K. Aswin, “Succinimide-N-Sulfonic Acid: An Efficient and Recyclable Catalyst for the One-Pot Synthesis of Tetrahydrobenzo[c]Acridine-8(7H)-One Derivatives,” Journal of Saudi Chemical Society 21, (2017): S44–S51.
  • M. Dabiri, M. Baghbanzadeh, and E. Arzroomchilar, “1-Methylimidazolium Triflouroacetate ([Hmim]TFA): An Efficient Reusable Acidic Ionic Liquid for the Synthesis of 1,8-Dioxo-Octahydroxanthenes and 1,8-Dioxo-Decahydroacridines,” Catalysis Communications 9, no. 5 (2008): 939–42.
  • J.-J. Xia, and K.-H. Zhang, “Synthesis of N-Substituted Acridinediones and Polyhydroquinoline Derivatives in Refluxing Water,” Molecules 17, no. 5 (2012): 5339–45.
  • İ. Yeşildağ, R. Ulus, E. Başar, M. Aslan, M. Kaya, and M. Bülbül, “Facile, Highly Efficient, and Clean One-Pot Synthesis of Acridine Sulfonamide Derivatives at Room Temperature and Their Inhibition of Human Carbonic Anhydrase Isoenzymes,”Monatshefte Für Chemie - Chemical Monthly 145, no. 6 (2014): 1027–34.
  • G. M. Ziarani, A. Badiei, M. Hassanzadeh, and S. Mousavi, “Synthesis of 1,8-Dioxo-Decahydroacridine Derivatives Using Sulfonic Acid Functionalized Silica (SiO2-Pr-SO3H) under Solvent Free Conditions,” Arabian Journal of Chemistry 7, no. 3 (2014): 335–9.
  • S. Balalaie, F. Chadegani, F. Darviche, and H. R. Bijanzadeh, “One‐Pot Synthesis of 1,8‐Dioxo‐Decahydroacridine Derivatives in Aqueous Media,” Chinese Journal of Chemistry 27, no. 10 (2009): 1953–6.
  • S. Ko, M. N. V. Sastry, C. Lin, and C.-F. Yao, “Molecular Iodine-Catalyzed One-Pot Synthesis of 4-Substituted-1,4-Dihydropyridine Derivatives via Hantzsch Reaction,” Tetrahedron Letters 46, no. 34 (2005): 5771–4.
  • S. S. Mansoor, K. Aswin, K. Logaiya, and S. P. N. Sudhan, “Aqua-Mediated Synthesis of Acridinediones with Reusable Silica-Supported Sulfuric Acid as an Efficient Catalyst,” Integrative Medicine Research 8, (2014): 265–75.
  • Z. Zarei, and B. Akhlaghinia, “ZnII Doped and Immobilized on Functionalized Magnetic Hydrotalcite ((Fe3O4/HT-SMTU-ZnII): A Novel, Green and Magnetically Recyclable Bifunctional Nanocatalyst for the One-Pot Multicomponent Synthesis of Acridinediones under Solvent-Free Conditions,” New Journal of Chemistry 41, no. 24 (2017): 15485–500.
  • A. Amoozadeh, S. Golian, and S. Rahmani, “TiO2-Coated Magnetite Nanoparticle-Supported Sulfonic Acid as a New, Efficient, Magnetically Separable and Reusable Heterogeneous Solid Acid Catalyst for Multicomponent Reactions,” RSC Advances 5, no. 57 (2015): 45974–82.
  • H. Pamuk, B. Aday, F. Şen, and M. Kaya, “Pt NPs@GO as a Highly Efficient and Reusable Catalyst for One-Pot Synthesis of Acridinedione Derivatives,” RSC Advances 5, no. 61 (2015): 49295–300.
  • B. Das, P. Thirupathi, I. Mahender, V. S. Reddy, and Y. K. Rao, “Amberlyst-15: An Efficient Reusable Heterogeneous Catalyst for the Synthesis of 1, 8-Dioxo-Octahydroxanthenes and 1,8-Dioxo-Decahydroacridines,” Journal of Molecular Catalysis A: Chemical 247, no. 1-2 (2006): 233–9.
  • A. V. Borhade, B. K. Uphade, and A. G. Gadhave, “Efficient, Solvent-Free Synthesis of Acridinediones Catalyzed by CdO Nanoparticles,” Research on Chemical Intermediates 41, no. 3 (2015): 1447–58.
  • E. Rafiee, S. Eavani, and M. Khodayari, “Magnetically Recoverable, Nanoscale-Supported Heteropoly Acid Catalyst for Green Synthesis of Biologically Active Compounds in Water,” Chinese Journal of Catalysis 34, no. 8 (2013): 1513–8.
  • B. Dam, S. Nandi, and A. K. Pal, “An Efficient ‘on-Water’Synthesis of 1,4-Dihydropyridines Using Fe3O4@SiO2 Nanoparticles as a Reusable Catalyst,” Tetrahedron Letters 55, no. 38 (2014): 5236–40.
  • A. Khojastehnezhad, M. Rahimizadeh, H. Eshghi, F. Moeinpour, and M. Bakavoli, “Ferric Hydrogen Sulfate Supported on Silica-Coated Nickel Ferrite Nanoparticles as New and Green Magnetically Separable Catalyst for 1,8 Dioxodecahydroacridine Synthesis,” Chinese Journal of Catalysis 35, no. 3 (2014): 376–82.
  • P. Das, A. Dutta, A. Bhaumik, and C. Mukhopadhyay, “Heterogeneous Ditopic ZnFe2O4 Catalyzed Synthesis of 4H-Pyrans: Further Conversion to 1,4-DHPs and Report of Functional Group Interconversion from Amide to Ester,” Green Chemistry 16, no. 3 (2014): 1426–35.
  • B. Paul, S. Vadivel, and S. S. Dhar, “α-Fe2O3 Immobilized Benzimidazolium Tribromide as Novel Magnetically Retrievable Catalyst for One-Pot Synthesis of Highly Functionalized Piperidines,”Chinese Chemical Letters 27, no. 11 (2016): 1725–30.
  • J. Safaei-Ghomi, H. Shahbazi-Alavi, P. Babaei, H. Basharnavaz, S. G. Pyne, and A. C. Willis, “Synthesis of Furo [3,2-c] Coumarins under Microwave Irradiation Using Nano-CoFe2O4@SiO2–PrNH2 as an Efficient and Magnetically Reusable Catalyst,” Chemistry of Heterocyclic Compounds 52, no. 5 (2016): 288–93.
  • M. A. El Aleem Ali El‐Remaily, A. M. Abu‐Dief, and R. M. El‐Khatib, “A Robust Synthesis and Characterization of Superparamagnetic CoFe2O4 Nanoparticles as an Efficient and Reusable Catalyst for Green Synthesis of Some Heterocyclic Rings,” Applied Organometallic Chemistry 30, (2016): 1022–9.
  • A. Maleki, P. Ravaghi, M. Aghaei, and H. Movahed, “A Novel Magnetically Recyclable Silver-Loaded Cellulose-Based Bionanocomposite Catalyst for Green Synthesis of Tetrazolo [1,5-a] Pyrimidines,” Research on Chemical Intermediates 43, no. 10 (2017): 5485–94.
  • S. R. Mousavi, H. Sereshti, H. Rashidi Nodeh, and A. Foroumadi, “A Novel Reusable Magnetic, Nanocatalyst Developed Based on Graphene Oxide Incorporated Strontium Nanoparticles for the Facial Synthesis of β‐Enamino Ketones under Solvent‐Free Conditions,” Applied Organometallic Chemistry 33, no. 1 (2019): e4644.
  • M. R. Mousavi, and M. T. Maghsoodlou, “Nano-SiO2: A Green, Efficient, and Reusable Heterogeneous Catalyst for the Synthesis of Quinazolinone Derivatives,” Journal of the Iranian Chemical Society 12, no. 5 (2015): 743–9.
  • A. V. Chate, U. B. Rathod, J. S. Kshirsagar, P. A. Gaikwad, K. D. Mane, P. S. Mahajan, M. D. Nikam, and C. H. Gill, “Ultrasound Assisted Multicomponent Reactions: A Green Method for the Synthesis of N-Substituted 1,8-Dioxo-Decahydroacridines Using β-Cyclodextrin as a Supramolecular Reusable Catalyst in Water,” Chinese Journal of Catalysis 37, no. 1 (2016): 146–52.
  • M. A. Ghasemzadeh, J. Safaei-Ghomi, and H. Molaei, “Fe3O4 Nanoparticles: As an Efficient, Green and Magnetically Reusable Catalyst for the One-Pot Synthesis of 1,8-Dioxo-Decahydroacridine Derivatives under Solvent-Free Conditions,” Comptes Rendus Chimie 15, no. 11–12 (2012): 969–74.
  • R. Rezaei, R. Khalifeh, M. Rajabzadeh, L. Dorosty, and M. M. Doroodmand, “Melamine-Formaldehyde Resin Supported H+-Catalyzed Three-Component Synthesis of 1,8-Dioxo-Decahydroacridine Derivatives in Water and under Solvent-Free Conditions,” Heterocyclic Communications 19, (2013): 57–63.
  • O. I. E. Sabbagh, M. A. Shabaan, H. H. Kadry, and E. S. Al, ‐Din, “Synthesis of New Nonclassical Acridines, Quinolines, and Quinazolines Derived from Dimedone for Biological Evaluation,” Archiv Der Pharmazie 343, no. 9 (2010): 519–27.
  • Z. Tang, Y. Chen, C. Liu, K. Cai, and S. Tu, “A Green Procedure for the Synthesis of 1,8‐Dioxodecahydroacridine Derivatives under Microwave Irradiation in Aqueous Media without Catalyst,” Journal of Heterocyclic Chemistry 47, (2010): 363–7.
  • Y.-B. Shen, and G.-W. Wang, “Solvent-Free Synthesis of Xanthenediones and Acridinediones,” Arkivoc 2008 (2008): 1–8.
  • F. Wang, L. Zhou, J. Li, D. Bao, and L. Chen, “Synthesis, Structure, and Biological Activities of 10‐Substituted 3,3,6,6‐Tetramethyl‐9‐Aryl‐3,4,6,7,9,10‐Hexahydroacridine‐1,8(2H,5H)‐Dione Derivatives,” Journal of Heterocyclic Chemistry 54, no. 6 (2017): 3120–5.
  • S. K. Singh, and K. N. Singh, “Eco‐Friendly and Facile One‐Pot Multicomponent Synthesis of Acridinediones in Water under Microwave,”Journal of Heterocyclic Chemistry 48, no. 1 (2011): 69–73.
  • B. Aday, H. Pamuk, M. Kaya, and F. Sen, “Graphene Oxide as Highly Effective and Readily Recyclable Catalyst Using for the One-Pot Synthesis of 1,8-Dioxoacridine Derivatives,” Journal of Nanoscience and Nanotechnology 16, no. 6 (2016): 6498–504.
  • X. Fan, Y. Li, X. Zhang, G. Qu, and J. Wang, “An Efficient and Green Preparation of 9‐Arylacridine‐1,8‐Dione Derivatives,” Heteroatom Chemistry 18, no. 7 (2007): 786–90.
  • W. Shen, L.-M. Wang, H. Tian, J. Tang, and J. Yu, “Brønsted Acidic Imidazolium Salts Containing Perfluoroalkyl Tails Catalyzed One-Pot Synthesis of 1,8-Dioxo-Decahydroacridines in Water,” Journal of Fluorine Chemistry 130, no. 6 (2009): 522–7.
  • M. Kidwai, and D. Bhatnagar, “Ceric Ammonium Nitrate (CAN) Catalyzed Synthesis of N-Substituted Decahydroacridine-1,8-Diones in PEG,” Tetrahedron Letters 51, no. 20 (2010): 2700–3.
  • F. Rashedian, D. Saberi, and K. Niknam, “Silica‐Bonded N‐Propyl Sulfamic Acid: A Recyclable Catalyst for the Synthesis of 1,8‐Dioxo‐Decahydroacridines, 1,8‐Dioxo‐Octahydroxanthenes and Quinoxalines,” Journal of the Chinese Chemical Society 57, no. 5A (2010): 998–1006.
  • B. Maleki, R. Tayebee, M. Kermanian, and S. Sedigh Ashrafi, “One-Pot Synthesis of 1,8-Dioxodecahydroacridines and Polyhydroquinoline Using 1,3-Di(Bromo or Chloro)-5,5-Dimethylhydantoin as a Novel and Green Catalyst under Solvent-Free Conditions,” Journal of the Mexican Chemical Society 57, (2013): 290–7.
  • K. B. Ramesh, and M. A. Pasha, “Study on One-Pot Four-Component Synthesis of 9-Aryl-Hexahydro-Acridine-1,8-Diones Using SiO2–I as a New Heterogeneous Catalyst and Their Anticancer Activity,” Bioorganic & Medicinal Chemistry Letters 24, (2014): 3907–13.
  • S. Chandrasekhar, Y. S. Rao, L. Sreelakshmi, B. Mahipal, and C. R. Reddy, “Tris(Pentafluorophenyl) Borane-Catalyzed Three-Component Reaction for the Synthesis of 1,8-Dioxodecahydroacridines under Solvent-Free Conditions,” Synthesis (2008): 1737–40.
  • P. Mahesh, K. Guruswamy, B. S. Diwakar, B. R. Devi, Y. L. N. Murthy, P. Kollu, and S. V. N. Pammi, “Magnetically Separable Recyclable Nano-Ferrite Catalyst for the Synthesis of Acridinediones and Their Derivatives under Solvent-Free Conditions,” Chemistry Letters 44, no. 10 (2015): 1386–8.
  • S. Rostamizadeh, A. Amirahmadi, N. Shadjou, and A. M. Amani, “MCM‐41‐SO3H as a Nanoreactor for the One‐Pot, Solvent‐Free Synthesis of 1,8‐Dioxo‐9‐Aryl Decahydroacridines,” Journal of Heterocyclic Chemistry 49, no. 1 (2012): 111–5.
  • S. R. Mousavi, H. Rashidi Nodeh, E. Zamiri Afshari, and A. Foroumadi, “Graphene Oxide Incorporated Strontium Nanoparticles as a Highly Efficient and Green Acid Catalyst for One-Pot Synthesis of Tetramethyl-9-Aryl-Hexahydroxanthenes and 13-Aryl-5H-Dibenzo[b,i]Xanthene-5,7,12,14(13H)-Tetraones Under Solvent-Free Conditions,” Catalysis Letters 149, no. 4 (2019): 1075–86.
  • J. F. Lu, and C. J. Tsai, “Hydrothermal Phase Transformation of Hematite to Magnetite,” Nanoscale Research Letters 9, (2014): 230.
  • M. Cai, H. Qian, Z. Wei, J. Chen, M. Zheng, and Q. Dong, “Polyvinyl Pyrrolidone-Assisted Synthesis of a Fe3O4/Graphene Composite with Excellent Lithium Storage Properties,” RSC Advances 4, no. 13 (2014): 6379–82.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.