93
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and Application of Imidazolium-Based Ionic Liquid Supported on Hydroxyapatite Encapsulated γ-Fe2O3 Nanocatalyst in Preparation of Pyrido[2,3-d]Pyrimidines

, , &
Pages 1925-1943 | Received 16 Oct 2019, Accepted 12 Dec 2019, Published online: 23 Dec 2019

References

  • (a) D. A. Ibrahim and N. S. M. Ismail, “Design, Synthesis and Biological Study of Novel Pyrido[2,3-d]pyrimidine as Anti-proliferative CDK2 Inhibitors,” European Journal of Medicinal Chemistry 46 (2011): 5825–32. (b) M. V. R. Reddy, B. S. Akul, C. Cosenza, S. Athuluridivakar, M. R. Mallireddigari, V. R. Pallela, V. K. Billa, D. R. C. Venkata Subbaiah, E. V. Bharathi, R. Vasquez-Del Carpio, et al., “Discovery of 8-Cyclopentyl-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-7-oxo-7,8-dihydro-pyrido[2,3-d]pyrimidine-6-carbonitrile (7x) as a Potent Inhibitor of Cyclin-dependent Kinase 4 (CDK4) and AMPK-related Kinase 5 (ARK5),” Journal of Medical Chemistry 57 (2014): 578–99. DOI:https://doi.org/10.1021/jm401073p.
  • M. Barvian, D. H. Boschelli, J. Cossrow, E. Dobrusin, A. Fattaey, A. Fritsch, D. Fry, P. Harvey, P. Keller, M. Garrett, et al. “Pyrido[2,3-d]Pyrimidin-7-One Inhibitors of Cyclin-Dependent Kinases,” Journal of Medicinal Chemistry 43, no. 24 (2000): 4606–16.,
  • (a) P. K. Chaudhari, “Synthesis and Biological Studies of Trihydropyrido[2,3-d]pyrimidines-6-Carbonitrile,” International Journal of Life Science and Pharma Research 1 (2011): 71–6. (b) S. M. Al‐Mousawi, M. A. El‐Apasery and M. H. Elnagdi, “Arylazoazines and Arylazoazoles as Interesting Disperse Dyes: Recent Developments with Emphasis on our Contribution Laboratory Outcomes,” Eur. J. Chem. 5 (2014): 192–200.
  • N. Kammasud, C. Boonyarat, K. Sanphanya, M. Utsintong, S. Tsunoda, H. Sakurai, I. Saiki, I. André, D. S. Grierson, and O. Vajragupta, “5-Substituted Pyrido[2,3-d]Pyrimidine, an Inhibitor against Three Receptor Tyrosine Kinases,” Bioorganic and Medicinal Chemistry Letters 19, no. 3 (2009): 745–50.
  • C. Kurumurthy, R. P. Sambasiva, S. B. Veera, G. Santhosh Kumar, R. P. Shanthan, B. Narsaiah, L. R. Velatooru, R. Pamanji, and R. J. Venkateswara, “Synthesis of Novel Alkyltriazole Tagged Pyrido[2,3-d]Pyrimidine Derivatives and Their Anticancer Activity,” European Journal of Medicinal Chemistry 46, no. 8 (2011): 3462–8.
  • R. Edupuganti, Q. Wang, C. D. J. Tavares, C. A. Chitjian, J. L. Bachman, P. Ren, E. V. Anslyn, and K. N. Dalby, “Synthesis and Biological Evaluation of Pyrido[2,3-d]Pyrimidine-2,4-Dione Derivatives as EEF-2K Inhibitors,” Bioorganic and Medicinal Chemistry 22, no. 17 (2014): 4910–6.
  • M. C. Bagley, D. D. Hughes, R. Lloyd, and V. E. C. Powers, “A New and Highly Expedient Synthesis of Pyrido[2,3-d]Pyrimidines,”Tetrahedron Letters 42, no. 37 (2001): 6585–8.
  • A. D. Broom, J. L. Shim, and G. L. Anderson, “Pyrido[2,3-d]Pyrimidines. IV. Synthetic Studies Leading to Various Oxopyrido[2,3-d]Pyrimidines,” The Journal of Organic Chemistry 41, no. 7 (1976): 1095–9.
  • M. N. Nasr and M. M. Gineinah, “Pyrido[2,3-d]Pyrimidines and Pyrimido[5',4':5, 6]Pyrido[2, 3-d]Pyrimidines as New Antiviral Agents: Synthesis and Biological Activity,” Archiv Der Pharmazie 235 (2002): 289–95.
  • M. Mamaghani and R. Hossein Nia, “Recent Developments in the MCRs Synthesis of Pyridopyrimidines and Spiro‐Pyridopyrimidines,”Journal of Heterocyclic Chemistry 54, no. 3 (2017): 1700–22.
  • I. Devi and P. J. Bhuyan, “Sodium Bromide Catalysed One-Pot Synthesis of Tetrahydrobenzo[β]Pyrans via a Three-Component Cyclocondensation under Microwave Irradiation and Solvent-Free Conditions,” Tetrahedron Letters 45, no. 47 (2004): 8625–7.
  • X. S. Wang, Z. S. Zeng, D. Q. Shi, X. Y. Wei, and Z. M. Zong, “KF-Alumina Catalyzed One-Pot Synthesis of Pyrido[2,3-d]Pyrimidine Derivatives,” Synthetic Communications 34, no. 23 (2004): 4331–8.
  • (a) A. Bazgir, M. M. Khanaposhtani, and A. A. Soorki, “One-Pot Synthesis and Antibacterial Activities of Pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidine-dione Derivatives,” Bioorganic & Medicinal Chemistry Letters 18 (2008): 5800–3. (b) R. Ghahremanzadeh, M. Sayyafi, S. Ahadi, and A. Bazgir, “Novel One-pot, Three-component Synthesis of Spiro[indoline-pyrazolo[4',3':5,6]pyrido[2,3-d]pyrimidine]trione Library,” Journal of Combinatorial Chemistry 11 (2009): 393–6. DOI: https://doi.org/10.1021/cc8001958.
  • C. Bagley, J. W. Dale, D. D. Hughes, M. Ohnesorge, N. G. Phillips, and J. Bowerb, “Synthesis of Pyridines and Pyrido[2,3-d]Pyrimidines by the Lewis Acid Catalysed Bohlmann-Rahtz Heteroannulation Reaction,” Synlett 28 (2001): 1523–6.
  • S. Abdolmohammadi and S. Balalaie, “An Efficient Synthesis of Pyrido[2,3-d]Pyrimidine Derivatives via One-Pot Three-Component Reaction in Aqueous Media,” International Journal of Organic Chemistry 02, no. 01 (2012): 7–14.
  • S. P. Satasia, P. N. Kalaria, and D. K. Raval, “Catalytic Regioselective Synthesis of Pyrazole Based Pyrido[2,3-d]pyrimidine-Diones and Their Biological Evaluation,” Organic & Biomolecular Chemistry 12, no. 11 (2014): 1751–8.
  • I. R. Parrey, and A. A. Hashmi, “One-Pot Synthesis of New Pyrido[2,3-d]Pyrimidine Derivatives under Ultrasonic Irradiation Using Organo Catalyst 4-Dimethylaminopyridine (DMAP),” Catalysis for Sustainable Energy 3 (2016): 1–6.
  • M. B. Gawande, P. S. Branco, and R. S. Varma, “Nano-Magnetite (Fe3O4) as a Support for Recyclable Catalysts in the Development of Sustainable Methodologies,” Chemical Society Reviews 42, no. 8 (2013): 3371–93.
  • S. Shylesh, V. Schünemann, and W. R. Thiel, “Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis,” Angewandte Chemie International Edition 49, no. 20 (2010): 3428–59.
  • A. Teimouri and A. Najafi Chermahini, “Zeolite and Sulfated Zirconia as Catalysts for the Synthesis of 5-Substituted 1H-Tetrazoles via [2 + 3] Cycloaddition of Nitriles and Sodium Azide,”Polyhedron 30, no. 15 (2011): 2606–10.
  • M. B. Gawande, A. Goswami, T. Asefa, H. Guo, A. V. Biradar, D.-L. Peng, R. Zboril, and R. S. Varma, “Core–Shell Nanoparticles: Synthesis and Applications in Catalysis and Electrocatalysis,” Chemical Society Reviews 44, no. 21 (2015): 7540–90. 10.
  • M. A. Bodaghifard, M. Hamidinasab, and N. Ahadi, “Recent Advances in the Preparation and Application of Organic–Inorganic Hybrid Magnetic Nanocatalysts on Multicomponent Reactions,” Current Organic Chemistry 22, no. 3 (2018): 234–67.
  • F. Alemi-Tameh, J. Safaei-Ghomi, M. Mahmoudi-Hashemi, and M. Monajjemi, “Amino Functionalized Nano Fe3O4@SiO2 as a Magnetically Green Catalyst for the One-Pot Synthesis of Spirooxindoles under Mild Conditions,” Polycyclic Aromatic Compounds 38, no. 3 (2018): 199–212.
  • F. Nemati and R. Saeedira, “Nano-Fe3O4 Encapsulated-Silica Particles Bearing Sulfonic Acid Groups as a Magnetically Separable Catalyst for Green and Efficient Synthesis of Functionalized Pyrimido[4,5-b]Quinolines and Indeno Fused Pyrido[2,3-d]Pyrimidines in Water,” Chinese Chemical Letters 24, no. 5 (2013): 370–2.
  • E. Tabrizian and A. Amoozadeh, “Sulfamic Acid‐Functionalized Nano‐Titanium Dioxide as a Novel and Highly Efficient Heterogeneous Nanocatalyst for One‐Pot and Solvent‐Free Synthesis of Hexahydroquinolines,” Journal of the Chinese Chemical Society 64, no. 3 (2017): 331–6. 201600802.
  • M. Esmaeilpour, J. Javidi, F. Nowroozi. Dodeji, and M. Mokhtari Abarghoui, “Facile Synthesis of 1- and 5-Substituted 1H-Tetrazoles Catalyzed by Recyclable Ligand Complex of Copper(II) Supported on Superparamagnetic Fe3O4@SiO2 Nanoparticles,” Journal of Molecular Catalysis A: Chemical 393 (2014): 18–29.
  • L. Kheirkhah, M. Mamaghani, A. Yahyazadeh, and N. O. Mahmoodi, “HAp‐Encapsulated γ‐Fe2O3‐Supported Dual Acidic Heterogeneous Catalyst for Highly Efficient One‐Pot Synthesis of Benzoxanthenones and 3‐Pyranylindoles,”Applied Organometallic Chemistry 32, no. 2 (2018): e4072.
  • N. Ahadi, M. A. Bodaghifard, and A. Mobinikhaledi, “Cu (II)‐β‐Cyclodextrin Complex Stabilized on Magnetic Nanoparticles: A Retrievable Hybrid Promoter for Green Synthesis of Spiropyrans,”Applied Organometallic Chemistry 33, no. 2 (2019): e4738.
  • M. Mamaghani, M. Sheykhan, M. Sadeghpour, and F. Tavakoli, “An Expeditious One-Pot Synthesis of Novel Bioactive Indole-Substituted Pyrido[2,3-d]Pyrimidines Using Fe3O4@SiO2-Supported Ionic Liquid Nanocatalyst,” Monatshefte Für Chemie - Chemical Monthly 149, no. 8 (2018): 1437–46.
  • L. Kheirkhah, M. Mamaghani, N. O. Mahmoodi, A. Yahyazadeh, A. Fallah Shojaei, and Y. Rostamli, “An Expedient Synthesis of Novel Derivatives of Pyrido[2,3‐d]Pyrimidines Using Magnetically Supported ZrO2 Nanocatalyst,”Journal of the Chinese Chemical Society 63, no. 5 (2016): 410–6.
  • M. Mohsenimehr, M. Mamaghani, F. Shirini, M. Sheykhan, and F. Azimian. Moghaddam, “One-Pot Synthesis of Novel Pyrido[2,3-d]Pyrimidines Using HAp-Encapsulated-γ-Fe2O3 Supported Sulfonic Acid Nanocatalyst under Solvent-Free Conditions,” Chinese Chemical Letters 25, no. 10 (2014): 1387–91.
  • M. Ahmadiazar, and M. Mamaghani, “Synthesis of (2-Iminomethyl)Pyridine Moiety Supported on Hydroxyapatite-Encapsulated-γ-Fe2O3 as an Inorganic-Organic Hybrid Magnetic Nanocatalyst for the Synthesis of Thiazole Derivatives under Ultrasonic Irradiation,” Current Organic Chemistry 22, no. 13 (2018): 1326–34.
  • M. Mamaghani, F. Shirini, M. Sheykhan, and M. Mohsenimehr, “Synthesis of a Copper (II) Complex Covalently Anchoring a (2-Iminomethyl)Phenol Moiety Supported on HAp-Encapsulated-α-Fe2O3 as an Inorganic–Organic Hybrid Magnetic Nanocatalyst for the Synthesis of Primary and Secondary Amides,” Rsc Advances 5, no. 55 (2015): 44524–9.
  • M. Sheykhan, L. Ma’mani, A. Ebrahimi, and A. Heydari, “Sulfamic Acid Heterogenized on Hydroxyapatite-Encapsulated γ-Fe2O3 Nanoparticles as a Magnetic Green Interphase Catalyst,” Journal of Molecular Catalysis A: Chemical 335, no. 1–2 (2011): 253–61.
  • L. Ma’mani, M. Sheykhan, A. Heydari, M. Faraji, and Y. Yamini, “Sulfonic Acid Supported on Hydroxyapatite-Encapsulated-γ-Fe2O3 Nanocrystallites as a Magnetically Brønsted Acid for N-Formylation of Amines,” Applied Catalysis A: General 377 (2010): 64–9.
  • (a) N. Lakshmi, P. Thirumurugan, K. M. Noorulla, and P. T. Perumal, “InCl3 Mediated One-pot Multicomponent Synthesis, Anti-Microbial, Antioxidant and Anticancer Evaluation of 3-Pyranylindole Derivatives,” Bioorganic and Medical Chemistry Letters 20 (2010): 5054–61. (b) P. Borah, P. S. Naidu, S. Majumder, and P. J. Bhuyan, “Microwave-assisted One-pot Multi-Component Reaction: Synthesis of Novel and Highly Functionalized 3-(Pyranyl)- and 3-(Dihydropyridinyl)indole Derivatives,” Molecular Diversity 18 (2014): 759–67. DOI: https://doi.org/10.1007/s11030-014-9533-7.
  • J. Slatt, I. Romero, and J. Bergman, “Cyanoacetylation of Indoles, Pyrroles and Aromatic Amines with the Combination Cyanoacetic Acid and Acetic Anhydride,” Synthesis 16 (2004): 2760–5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.