160
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

[H-Pyrr][HSO4] as an Efficient Ionic Liquid Catalyst for the Synthesis of Xanthenes, Tetraketones, and Triazolo[2,1-b]quinazolinones

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1972-1987 | Received 14 Sep 2019, Accepted 19 Dec 2019, Published online: 03 Jan 2020

References

  • M. A. Shaikh, M. Farooqui, and S. Abed, “[Bu3NH][HSO4] Catalyzed: An Eco-Efficient Synthesis of 1H-Pyrazolo[1,2-b]Phthalazine-5,10-Diones and 2H-Indazolo[2,1-b]Phthalazine-Triones under Solvent-Free Conditions,” Research on Chemical Intermediates 44, no. 9 (2018): 5483–500.
  • A. Amoozadeh, S. Rahmani, M. Bitaraf, F. B. Abadi, and E. Tabrizian, “Nano-Zirconia as an Excellent Nano Support for Immobilization of Sulfonic Acid: A New, Efficient and Highly Recyclable Heterogeneous Solid Acid Nanocatalyst for Multicomponent Reactions,” New Journal of Chemistry 40, no. 1 (2016): 770–80.
  • A. S. Amarasekara and C. D. Gutierrez Reyes, “Brønsted Acidic Ionic Liquid Catalyzed One-Pot Conversion of Cellulose to Furanic Biocrude and Iidentification of the Products Using LC-MS,” Renewable Energy 136, (2019): 352–7.
  • A. S. Amarasekara, “Acidic Ionic Liquids,” Chemical Reviews 116, no. 10 (2016): 6133–83.
  • S. Darvishzad, N. Daneshvar, F. Shirini, and H. Tajik, “Introduction of Piperazine-1,4-Diium Dihydrogen Phosphate as a New and Highly Efficient Dicationic Brønsted Acidic Ionic Salt for the Synthesis of (Thio)Barbituric Acid Derivatives in Water,” Journal of Molecular Structure 1178 (2019): 420–7.
  • Z. Abdi Piralghar, M. M. Hashemi, and A. Ezabadi, “Synthesis and Characterization of Brönsted Acidic Ionic Liquid Based on Ethylamine as an Efficient Catalyst for the Synthesis of Xanthene Derivatives under Solvent-Free Conditions,” Polycyclic Aromatic Compounds (2019): 1–14. https://www.tandfonline.com/doi/abs/10.1080/10406638.2018.1557709
  • H. Alinezhad, M. Tajbakhsh, B. Maleki, and F. P. Oushibi, “Acidic Ionic Liquid [H-NP]HSO4 Promoted One-Pot Synthesis of Dihydro-1H-Indeno[1,2-b]Pyridines and Polysubstituted Imidazoles,” Polycyclic Aromatic Compounds (2019): 1–16. https://www.tandfonline.com/doi/abs/10.1080/10406638.2018.1557707
  • T. Hideo and J. Teruomi, “Jpn. Tokkyo Koho JP 56005480, 1981,” Chemical Abstract 95 (1981): 80922b.
  • J. P. Poupelin, G. Saint-Ruf, O. Foussard-Blanpin, G. Narcisse, G. Uchida-Ernouf, and R. Lacroix, “Synthesis and Antiinflammatory Properties of Bis (2-Hydroxy-1-Naphthyl) Methane Derivatives. I. Monosubstituted Derivatives,” European Journal of Medicinal Chemistry 13 (1978): 67–71.
  • K. Chibale, M. Visser, D. van Schalkwyk, P. J. Smith, A. Saravanamuthu, and A. H. Fairlamb, “Exploring the Potential of Xanthene Derivatives as Trypanothione Reductase Inhibitors and Chloroquine Potentiating Agents,” Tetrahedron 59, no. 13 (2003): 2289–96.
  • N. Mulakayala, P. V. N. S. Murthy, D. Rambabu, M. Aeluri, R. Adepu, G. R. Krishna, C. M. Reddy, K. R. S. Prasad, M. Chaitanya, C. S. Kumar, et al. “Catalysis by Molecular Iodine: A Rapid Synthesis of 1,8-Dioxo-Octahydroxanthenes and Their Evaluation as Potential Anticancer Agents,” Bioorganic & Medicinal Chemistry Letters 22, no. 6 (2012): 2186–91.
  • R.-M. Ion, A. Planner, K. Wiktorowicz, and D. Frackowiak, “The Incorporation of Various Porphyrins into Blood Cells Measured via Flow Cytometry, Absorption and Emission Spectroscopy,” Acta Biochimica Polonica 45, no. 3 (1998): 833–45.
  • M. Ahmad, T. A. King, D.-K. Ko, B. H. Cha, and J. Lee, “Performance and Photostability of Xanthene and Pyrromethene Laser Dyes in Sol-Gel Phases,” Journal of Physics D: Applied Physics 35, no. 13 (2002): 1473–6.
  • A. Banerjee, and A. Mukherjee, “Chemical Aspects of Santalin as a Histological Stain,” Stain Technology 56, no. 2 (1981): 83–5.
  • C. G. Knight, and T. Stephens, “Xanthene-Dye-Labelled Phosphatidylethanolamines as Probes of Interfacial pH. Studies in Phospholipid Vesicles,” Biochemical Journal 258, no. 3 (1989): 683–7.
  • R. C. Hunter, and T. J. Beveridge, “Application of a pH-Sensitive Fluoroprobe (C-SNARF-4) for pH Microenvironment Analysis in PseudomonasAeruginosa Biofilms,” Applied and Environmental Microbiology 71, no. 5 (2005): 2501–10.
  • M.-J. Hour, L.-J. Huang, S.-C. Kuo, Y. Xia, K. Bastow, Y. Nakanishi, E. Hamel, and K.-H. Lee, “6-Alkylamino- and 2,3-Dihydro-3‘-Methoxy-2-Phenyl-4-Quinazolinones and Related Compounds: Their Synthesis, Cytotoxicity, and Inhibition of Tubulin Polymerization,” Journal of Medicinal Chemistry 43, no. 23 (2000): 4479–87.
  • Y. Xia, Z.-Y. Yang, M.-J. Hour, S.-C. Kuo, P. Xia, K. F. Bastow, Y. Nakanishi, P. Nampoothiri, T. Hackl, E. Hamel, et al. “Antitumor Agents. Part 204:1 Synthesis and Biological Evaluation of Substituted 2-Aryl Quinazolinones,” Bioorganic & Medicinal Chemistry Letters 11, no. 9 (2001): 1193–6.
  • V. Alagarsamy and U. S. Pathak, “Synthesis and Antihypertensive Activity of Novel 3-Benzyl-2-Substituted-3H-[1,2,4]Triazolo[5,1-b]Quinazolin-9-Ones,” Bioorganic & Medicinal Chemistry 15, no. 10 (2007): 3457–62.
  • V. Alagarsamy, R. Revathi, S. Meena, K. Ramaseshu, S. Rajasekaran, and E. De Clerco, “Anti-HIV, Antibacterial and Antifungal Activities of Some 2,3-Disubstituted Quinazolin-4(3H)-ones,” Indian Journal of Pharmaceutical Sciences 66, no. 4 (2004): 459–62.
  • N. G. Aher, V. S. Pore, N. N. Mishra, A. Kumar, P. K. Shukla, A. Sharma, and M. K. Bhat, “Synthesis and Antifungal Activity of 1,2,3-Triazole Containing Fluconazole Analogues,” Bioorganic & Medicinal Chemistry Letters 19, no. 3 (2009): 759–63.
  • L. Kang‐Chien and H. Ming‐Kuan, “Guanidine‐Annelated Heterocycles, VII: Synthesis and Antihypertensive Activity of 10‐Dimethyl‐5H,10H‐1,2,4‐Triazolo[5,1‐b]Quinazolin‐5‐One,” Archiv der Pharmazie 319, no. 2 (1986): 188–9.
  • A. N. Dadhania, V. K. Patel, and D. K. Raval, “Ionic Liquid Promoted Facile and Green Synthesis of 1,8-Dioxo-Octahydroxanthene Derivatives under Microwave Irradiation,” Journal of Saudi Chemical Society 21, (2017): S163–S169.
  • X. Fan, X. Hu, X. Zhang, and J. Wang, “InCl3·4H2O-Promoted Green Preparation of Xanthenedione Derivatives in Ionic Liquids,” Canadian Journal of Chemistry 83, no. 1 (2005): 16–20.
  • X.-S. Fan, Y.-Z. Li, X.-Y. Zhan, X.-Y. Hu, and J.-J. Wang, “FeCl3•6H2O Catalyzed Reaction of Aromatic Aldehydes with 5,5-Dimethyl-1,3-Cyclohexandione in Ionic Liquids,” Chinese Chemical Letters 16, no. 7 (2005): 897–9.
  • F. Rashedian, D. Saberi, and K. Niknam, “Silica-Bonded N-Propyl Sulfamic Acid: A Recyclable Catalyst for the Synthesis of 1,8-Dioxo-Decahydroacridines, 1,8-Dioxo-Octahydroxanthenes and Quinoxalines,” Journal of the Chinese Chemical Society 57, no. 5A (2010): 998–1006.
  • M. A. Bigdeli, F. Nemati, G. H. Mahdavinia, and H. Doostmohammadi, “A Series of 1,8-Dioxo-Octahydroxanthenes are Prepared Using Trichloroisocyanuric Acid,” Chinese Chemical Letters 20, no. 11 (2009): 1275–8.
  • M. Bigdeli, “Clean Synthesis of 1,8-Dioxo-Octahydroxanthenes Promoted by DABCO-Bromine in Aqueous Media,” Chinese Chemical Letters 21, no. 10 (2010): 1180–2.
  • B. Das, P. Thirupathi, I. Mahender, V. S. Reddy, and Y. K. Rao, “Amberlyst-15: An Efficient Reusable Heterogeneous Catalyst for the Synthesis of 1,8-Dioxo-Octahydroxanthenes and 1,8-Dioxo-Decahydroacridines,” Journal of Molecular Catalysis A: Chemical 247, no. 1–2 (2006): 233–9.
  • B. Das, P. Thirupathi, K. R. Reddy, B. Ravikanth, and L. Nagarapu, “An Efficient Synthesis of 1,8-Dioxo-Octahydroxanthenes Using Heterogeneous Catalysts,” Catalysis Communications 8, no. 3 (2007): 535–8.
  • A. Davoodnia, H. Norouzi, N. Tavakoli-Hoseini, and A. Zare-Bidaki, “Performance Evaluation of Newly Prepared Alumina Supported Polyphosphoric Acid (PPA/Al2O3) as Efficient and Reusable Catalyst for the Synthesis of 1,8-Dioxo-Decahydroacridines,” Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 44, no. 1 (2014): 70–8.
  • S. Rezayati, Z. Erfani, and R. Hajinasiri, “Phospho Sulfonic Acid as Efficient Heterogeneous Brønsted Acidic Catalyst for One-Pot Synthesis of 14H-Dibenzo[a, j] Xanthenes and 1,8-Dioxo-Octahydroxanthenes,” Chemical Papers 69, no. 4 (2015): 536–43.
  • A. Fallah, M. Tajbakhsh, H. Vahedi, and A. Bekhradnia, “Natural Phosphate as an Efficient and Green Catalyst for Synthesis of Tetraketone and Xanthene Derivatives,” Research on Chemical Intermediates 43, no. 1 (2017): 29–43.
  • S. Ghassamipour, and R. Ghashghaei, “Zirconium Dodecylphosphonate Promoted Synthesis of Xanthene Derivatives by Condensation Reaction of Aldehydes and β-Naphthol or Dimedone in Green Media,” Monatshefte Für Chemie - Chemical Monthly 146, no. 1 (2015): 159–63.
  • A. Ilangovan, S. Malayappasamy, S. Muralidharan, and S. Maruthamuthu, “A Highly Efficient Green Synthesis of 1, 8-Dioxo-octahydroxanthenes,” Chemistry Central Journal 5, no. 1 (2011): 81.
  • A. Ilangovan, S. Muralidharan, P. Sakthivel, S. Malayappasamy, S. Karuppusamy, and M. P. Kaushik, “Simple and Cost Effective Acid Catalysts for Efficient Synthesis of 9-Aryl-1,8-Dioxooctahydroxanthene,” Tetrahedron Letters 54, no. 6 (2013): 491–4.
  • Z. Lasemi, and E. Mehrasbi, “ZnO Nanoparticles: An Efficient and Rreusable Catalyst for One-Pot Synthesis of 1,8-Dioxo-Octahydroxanthenes,” Research on Chemical Intermediates 41, no. 5 (2015): 2855–66.
  • M. Mokhtary, and S. A. Mirfarjood Langroudi, “Polyvinylpolypyrrolidone-Supported Boron Trifluoride: A Mild and Efficient Catalyst for the Synthesis of 1,8-Dioxo-Octahydroxanthenes and 1,8-Dioxo-Decahydroacridines,” Monatshefte Für Chemie - Chemical Monthly 145, no. 9 (2014): 1489–94.
  • R. M. Naidu Kalla, R. S. Karunakaran, M. Balaji, and I. Kim, “Catalyst-Free Synthesis of Xanthene and Pyrimidine-Fused Heterocyclic Derivatives at Water-Ethanol Medium and Their Antioxidant Properties,” ChemistrySelect 4, no. 2 (2019): 644–9.
  • M. Nisar, I. Ali, M. Raza Shah, A. Badshah, M. Qayum, H. Khan, I. Khan, and S. Ali, “Amberlite IR-120H as a Recyclable Catalyst for the Synthesis of 1,8-Dioxo-Octahydroxanthene Analogs and Their Evaluation as Potential Leishmanicidal Agents,” RSC Advances 3, no. 44 (2013): 21753–8.
  • A. Pramanik, and S. Bhar, “Alumina-Sulfuric Acid Catalyzed Eco-Friendly Synthesis of Xanthenediones,” Catalysis Communications 20 (2012): 17–24.
  • F. Shirini, S. Akbari-Dadamahaleh, and A. Mohammad-Khah, “Rice-Husk-Supported FeCl3 Nano-Particles: Introduction of a Mild, Efficient and Reusable Catalyst for Some of the Multi-Component Reactions,” Comptes Rendus Chimie 16, no. 10 (2013): 945–55.
  • F. Shirini, G. H. Imanzadeh, M. Abedini, M. Akberi Dokhte-Ghaziani, M. Safarpoor Langroodi, and P. G. Ghasemabadi, “Introduction of Two Efficient Catalysts for the Synthesis of 1,8-Dioxo-Octahydroxanthene Derivatives in the Absence of Solvent,” Iranian Journal of Catalysis 2, no. 3 (2012): 115–9.
  • Y. Ren, B. Yang, and X. Liao, “Merging Supramolecular Catalysis and Aminocatalysis: Amino-Appended β-Cyclodextrins (ACDs) as Efficient and Recyclable Supramolecular Catalysts for the Synthesis of Tetraketones,”RSC Advances 6, no. 26 (2016): 22034–42.
  • F. Kamali, and F. Shirini, “Melamine: An Efficient Promoter for Some of the Multi-Component Reactions,” Polycyclic Aromatic Compounds (2019): 1–22. https://www.tandfonline.com/doi/abs/10.1080/10406638.2019.1570949
  • B. Maleki, M. Raei, H. Alinezhad, R. Tayebee, and A. Sedrpoushan, “Chemoselective Synthesis of Tetraketones in Water Catalyzed by Nanostructured Diphosphate Na2CaP2O7,” Organic Preparations and Procedures International 50, no. 3 (2018): 288–300.
  • F. Nemati, M. M. Heravi, and R. S. Rad, “Nano-Fe3O4 Encapsulated-Silica Particles Bearing Sulfonic Acid Groups as a Magnetically Separable Catalyst for Highly Efficient Knoevenagel Condensation and Michael Addition Reactions of Aromatic Aldehydes with 1,3-Cyclic Diketones,” Chinese Journal of Catalysis 33, no. 11–12 (2012): 1825–31.
  • N. Azizi, S. Dezfooli, and M. M. Hashemi, “Chemoselective Synthesis of Xanthenes and Tetraketones in a Choline Chloride-Based Deep Eutectic Solvent,” Comptes Rendus Chimie 16, no. 11 (2013): 997–1001.
  • V. V. Lipson, S. M. Desenko, M. G. Shirobokova, and V. V. Borodina, “Synthesis of 9-Aryl-6,6-Dimethyl-5,6,7,9-Tetrahydro-1,2,4-Triazolo[5,1-b]Quinazolin-8(4H)Ones,” Chemistry of Heterocyclic Compounds 39, no. 9 (2003): 1213–7.
  • A. Shaabani, E. Farhangi, and A. Rahmati, “Synthesis of Tetrahydrobenzimidazo[1,2-b]Quinazolin-1(2H)-One and Tetrahydro-1,2,4-Triazolo[5,1-b]Quinazolin-8(4H)-One Ring Systems under Solvent-Free Conditions,” Combinatorial Chemistry & High Throughput Screening 9, no. 10 (2006): 771–6.
  • M. Haghighat, F. Shirini, and M. Golshekan, “Efficiency of NaHSO4 Modified Periodic Mesoporous Organosilica Magnetic Nanoparticles as a New Magnetically Separable Nanocatalyst in the Synthesis of [1,2,4]Triazolo Quinazolinone/Pyrimidine Derivatives,” Journal of Molecular Structure 1171 (2018): 168–78.
  • R. G. Puligoundla, S. Karnakanti, R. Bantu, K. Nagaiah, S. B. Kondra, and L. Nagarapu, “A Simple, Convenient One-pot Synthesis of [1,2,4]Triazolo/Benzimidazolo Quinazolinone Derivatives by Using Molecular Iodine,”Tetrahedron Letters 54, no. 20 (2013): 2480–3.
  • M. M. Heravi, F. Derikvand, and L. Ranjbar, “Sulfamic Acid–Catalyzed, Three-Component, One-Pot Synthesis of [1,2,4]Triazolo/Benzimidazolo Quinazolinone Derivatives,” Synthetic Communications 40, no. 5 (2010): 677–85.
  • M. Kidwai, and R. Chauhan, “Nafion-H® Catalyzed Efficient One-Pot Synthesis of Triazolo[5,1-b]Quinazolinones and Triazolo[1,5-a]Pyrimidines: A Green Strategy,” Journal of Molecular Catalysis A: Chemical 377 (2013): 1–6.
  • M. R. Mousavi, M. T. Maghsoodlou, N. Hazeri, and S. M. Habibi-Khorassani, “A Simple, Economical, and Environmentally Benign Protocol for the Synthesis of [1,2,4]Triazolo[5,1-b]Quinazolin-8(4H)-One and Hexahydro[4,5]Benzimidazolo[2,1-b]Quinazolinone Derivatives,” Journal of the Iranian Chemical Society 12, no. 8 (2015): 1419–24.
  • N. Seyyedi, F. Shirini, M. S. N. Langarudi, and S. Jashnani, “A Simple and Convenient Synthesis of [1,2,4]Triazolo/Benzimidazolo Quinazolinone and [1,2,4]Triazolo[1,5-a]Pyrimidine Derivatives Catalyzed by DABCO-Based Ionic Liquids,” Journal of the Iranian Chemical Society 14, no. 9 (2017): 1859–67.
  • M. M. Heravi, L. Ranjbar, F. Derikvand, B. Alimadadi, H. A. Oskooie, and F. F. Bamoharram, “A Three-Component One-Pot Procedure for the Synthesis of [1,2,4]Triazolo/Benzimidazolo-Quinazolinone Derivatives in the Presence of H6P2W18O62·18H2O as a Green and Reusable Catalyst,” Molecular Diversity 12, no. 3-4 (2008): 181–5.
  • M. R. Mousavi and M. T. Maghsoodlou, “Nano-SiO2: A Green, Efficient, and Reusable Heterogeneous Catalyst for the Synthesis of Quinazolinone Derivatives,” Journal of the Iranian Chemical Society 12, no. 5 (2015): 743–9.
  • M. Anouti, M. Caillon-Caravanier, Y. Dridi, H. Galiano, and D. Lemordant, “Synthesis and Characterization of New Pyrrolidinium Based Protic Ionic Liquids. Good and Superionic Liquids,” The Journal of Physical Chemistry B 112, no. 42 (2008): 13335–43.
  • F. Shirini, M. S. N. Langarudi, and N. Daneshvar, “Preparation of a New DABCO-Based Ionic Liquid [H2-DABCO][H2PO4]2 and Its Application in the Synthesis of Tetrahydrobenzo[b]Pyran and Pyrano[2,3-d]Pyrimidinone Derivatives,” Journal of Molecular Liquids 234 (2017): 268–78.
  • O. Goli-Jolodar, F. Shirini, and M. Seddighi, “Introduction of a Novel Nanosized N-Sulfonated Brønsted Acidic Catalyst for the Promotion of the Synthesis of Polyhydroquinoline Derivatives via Hantzsch Condensation under Solvent-Free Conditions,” RSC Advances 6, no. 31 (2016): 26026–37.
  • F. Shirini, M. Abedini, M. Seddighi, O. G. Jolodar, M. S. N. Langarudi, and S. Zamani, “Introduction of a New Bi-SO3H Ionic Liquid Based on 2,2'-Bipyridine as a Novel Catalyst for the Synthesis of Various Xanthene Derivatives,” RSC Adv. 4, no. 108 (2014): 63526–32.
  • F. Shirini, M. S. N. Langarudi, M. Seddighi, and O. G. Jolodar, “Bi-SO3H Functionalized Ionic Liquid Based on DABCO as a Mild and Efficient Catalyst for the Synthesis of 1,8-Dioxo-Octahydroxanthene and 5-arylmethylene-Pyrimidine-2,4,6-Trione Derivatives,” Research on Chemical Intermediates 41, no. 11 (2015): 8483–97.
  • O. Goli-Jolodar and F. Shirini, “Succinimidinium Hydrogensulfate ([H-Suc]HSO4) as a New, Green and Efficient Ionic Liquid Catalyst for the Synthesis of Tetrahydrobenzimidazo[2,1-b]Quinazolin-1(2H)-One, 1-(Benzothiazolylamino)Phenylmethyl-2-Naphthol, 1,8-Dioxo-Octahydroxanthene and Bis(Indolyl)Methane Derivatives,” Journal of the Iranian Chemical Society 13, no. 6 (2016): 1077–92.
  • F. Shirini, A. Yahyazadeh, and K. Mohammadi, “One-Pot Synthesis of Various Xanthene Derivatives Using Ionic Liquid 1,3-Disulfonic Acid Imidazolium Hydrogen Sulfate as an Efficient and Reusable Catalyst under Solvent-Free Conditions,” Chinese Chemical Letters 25, no. 2 (2014): 341–7.
  • Z. Sharifi, N. Daneshvar, M. S. N. Langarudi, and F. Shirini, “Comparison of the Efficiency of Two Imidazole-Based Dicationic Ionic Liquids as the Catalysts in the Synthesis of Pyran Derivatives and Knoevenagel Condensations,”Research on Chemical Intermediates 45, no. 10 (2019): 4941–58.
  • A. Zare, A. R. Moosavi-Zare, M. Merajoddin, M. A. Zolfigol, T. Hekmat-Zadeh, A. Hasaninejad, A. Khazaei, M. Mokhlesi, V. Khakyzadeh, F. Derakhshan-Panah, et al. “Ionic Liquid Triethylamine-Bonded Sulfonic Acid {[Et3N–SO3H]Cl} as a Novel, Highly Efficient and Homogeneous Catalyst for the Synthesis of β-Acetamido Ketones, 1,8-Dioxo-Octahydroxanthenes and 14-Aryl-14H-Dibenzo[a,j]Xanthenes,” Journal of Molecular Liquids 167 (2012): 69–77.
  • J. M. Khurana, and K. Vij, “Nickel Nanoparticles: A Highly Efficient Catalyst for One-Pot Synthesis of Tetraketones and Bis-Coumarins,” Journal of Chemical Sciences 124, no. 4 (2012): 907–12.
  • K. M. Khan, G. M. Maharvi, M. T. H. Khan, A. J. Shaikh, S. Perveen, S. Begum, and M. I. Choudhary, “Tetraketones: A New Class of Tyrosinase Inhibitors,” Bioorganic & Medicinal Chemistry 14, no. 2 (2006): 344–51.
  • F. Shirini and N. Daneshvar, “Introduction of Taurine (2-Aminoethanesulfonic Acid) as a Green Bio-Organic Catalyst for the Promotion of Organic Reactions under Green Conditions,” RSC Advances 6, no. 111 (2016): 110190–205.
  • G. M. Maharvi, S. Ali, N. Riaz, N. Afza, A. Malik, M. Ashraf, L. Iqbal, and M. Lateef, “Mild and Efficient Synthesis of New Tetraketones as Lipoxygenase Inhibitors and Antioxidants,” Journal of Enzyme Inhibition and Medicinal Chemistry 23, no. 1 (2008): 62–9.
  • K. Mohammed. Khan, G. Murtaza Maharvi, S. Ahmed. Nawaz, S. Perveen, and M. Iqbal Choudhary, “An Alternative Method for the Synthesis of Tetraketones and Their Lipoxygenase Inhibiting and Antioxidant Properties,” Letters in Drug Design & Discovery 4, no. 4 (2007): 272–8.
  • O. Goli-Jolodar and F. Shirini, “An Efficient and Practical Synthesis of Benzazolo[2,1-b]Quinazolinones and Triazolo[2,1-b]Quinazolinones Catalyzed by Nano-Sized NS-C4(DABCO-SO3H)2)·4Cl,” Journal of the Iranian Chemical Society 14, no. 11 (2017): 2275–86.
  • K. Niknam and M. Damya, “1-Butyl-3-Methylimidazolium Hydrogen Sulfate [Bmim]HSO4: An Efficient Reusable Acidic Ionic Liquid for the Synthesis of 1,8-Dioxo-Octahydroxanthenes,” Journal of the Chinese Chemical Society 56, no. 3 (2009): 659–65.
  • B. Maleki, A. Davoodi, M. V. Azghandi, M. Baghayeri, E. Akbarzadeh, H. Veisi, S. S. Ashrafi, and M. Raei, “Facile Synthesis and Investigation of 1,8-Dioxooctahydroxanthene Derivatives as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution,” New Journal of Chemistry 40, no. 2 (2016): 1278–86.
  • B. Maleki, M. Raei, E. Akbarzadeh, H. Ghasemnejad-Bosra, A. Sedrpoushan, S. S. Ashrafi, and M. N. Dehdashti, “Chemoselective Synthesis of 2,2′-Arylmethylene Bis-(3-Hydroxy-2-Cyclohexenes) (“Tetraketones”) in Hexafluoro-2-Propanol,” Organic Preparations and Procedures International 48, no. 1 (2016): 62–71.
  • M. R. Mousavi and M. T. Maghsoodlou, “Catalytic Systems Containing p-Toluenesulfonic Acid Monohydrate Catalyzed the Synthesis of Triazoloquinazolinone and Benzimidazoquinazolinone Derivatives,” Monatshefte Für Chemie - Chemical Monthly 145, no. 12 (2014): 1967–73.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.