206
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Tetrabutylammonium Bromide (TBAB) Promoted Metal-Free Synthesis of 2H-Indazolo[1,2-b]Phthalazinetriones and Pyrazolo[1,2-b]Phthalazines from Benzylalcohol through Aerobic Oxidation, Sequential Addition-Cyclization with Phthalhydrazide and β-Diketones

&
Pages 344-357 | Received 15 Dec 2019, Accepted 16 Feb 2020, Published online: 28 Feb 2020

References

  • M. Sayyafi, M. Seyyedhamzeh, H. R. Khavasi, and A. Bazgir, “One-Pot, Three-Component Route to 2H-Indazolo [2, 1-b] Phthalazine-Triones,” Tetrahedron 64, no. 10 (2008): 2375–8.
  • G. Shukla, R. K. Verma, G. K. Verma, and M. S. Singh, “Solvent-Free Sonochemical One-Pot Three-Component Synthesis of 2H-Indazolo [2, 1-b] Phthalazine-1, 6, 11-Triones and 1H-Pyrazolo [1, 2-b] Phthalazine-5, 10-Diones,” Tetrahedron Letters 52, no. 52 (2011): 7195–8.
  • J. S. Kim, H.-K. Rhee, H. J. Park, S. K. Lee, C.-O. Lee, and H.-Y P. Choo, “Synthesis of 1-/2-Substituted-[1, 2, 3] Triazolo [4, 5-g] Phthalazine-4, 9-Diones and Evaluation of Their Cytotoxicity and Topoisomerase II Inhibition,” Bioorganic & Medicinal Chemistry 16 (2008): 4545–50.
  • Turk, C. Svete, J. Stanovnik, B. Golič, L. Golič‐Grdadolnik, S. Golobič, A., and Selič, L. “Regioselective 1, 3‐Dipolar Cycloadditions of (1Z)‐1‐(Arylmethylidene)‐5, 5‐Dimethyl‐3‐Oxopyrazolidin‐1‐Ium‐2‐Ide Azomethine Imines to Acetylenic Dipolarophiles,” Helvetica Chimica Acta 84, no. 1 (2001): 146–56.
  • F. M. Arlan, J. Khalafy, and R. Maleki, “One-Pot Three-Component Synthesis of a Series of 4-Aroyl-1, 6-Diaryl-3-Methyl-1H-Pyrazolo [3, 4-b] Pyridine-5-Carbonitriles in the Presence of Aluminum Oxide as a Nanocatalyst,” Chemistry of Heterocyclic Compounds 54, no. 1 (2018): 51–7.
  • S. K. Singh, P. G. Reddy, K. S. Rao, B. B. Lohray, P. Misra, S. A. Rajjak, Y. K. Rao, and A. Venkateswarlu, “Polar Substitutions in the Benzenesulfonamide Ring of Celecoxib Afford a Potent 1, 5-Diarylpyrazole Class of COX-2 Inhibitors,” Bioorganic & Medicinal Chemistry Letters 14 (2004): 499–504.
  • M. J. Genin, C. Biles, B. J. Keiser, S. M. Poppe, S. M. Swaney, W. G. Tarpley, Y. Yagi, and D. L. Romero, “Novel 1, 5-Diphenylpyrazole Nonnucleoside HIV-1 Reverse Transcriptase Inhibitors with Enhanced Activity versus the Delavirdine-Resistant P236L Mutant: Lead Identification and SAR of 3-and 4-Substituted Derivatives,” Journal of Medicinal Chemistry 43, no. 5 (2000): 1034–40.
  • N. K. Terrett, A. S. Bell, D. Brown, and P. Ellis, “Sildenafil (Viagra), a Potent and Selective Inhibitor of Type 5 cGMP Phosphodiesterase with Utility for the Treatment of Male Erectile Dysfunction,” Bioorganic & Medicinal Chemistry Letters 6 (1996): 1819–24.
  • J. Li, Y.-F. Zhao, X.-Y. Yuan, J.-X. Xu, and P. Gong, “Synthesis and Anticancer Activities of Novel 1, 4-Disubstituted Phthalazines,” Molecules 11, no. 7 (2006): 574–82.
  • C.-K. Ryu, R.-E. Park, M.-Y. Ma, and J.-H. Nho, “Synthesis and Antifungal Activity of 6-Arylamino-Phthalazine-5, 8-Diones and 6, 7-Bis (Arylthio)-Phthalazine-5, 8-Diones,” Bioorganic & Medicinal Chemistry Letters 17 (2007): 2577–80.
  • Robert W. Carling, Kevin W. Moore, Leslie J. Street, Deborah Wild, Catherine Isted, Paul D. Leeson, Steven Thomas, Desmond O'Connor, Ruth M. McKernan, Katherine Quirk, et al. “3-phenyl-6-(2-Pyridyl) Methyloxy-1, 2, 4-Triazolo [3, 4-a] Phthalazines and Analogues: high-Affinity γ-Aminobutyric acid-A Benzodiazepine Receptor Ligands with α2, α3, and α5-Subtype Binding Selectivity over α1,” Journal of Medicinal Chemistry 47, no. 7 (2004): 1807–22.
  • L. Zhang, L. P. Guan, X. Y. Sun, C. X. Wei, K. Y. Chai, and Z. S. Quan, “Synthesis and Anticonvulsant Activity of 6‐Alkoxy‐[1, 2, 4] Triazolo [3, 4‐a],” Chemical Biology & Drug Design 73 (2009): 313–9.
  • J. Zhang, X.-W. Cao, L.-S. Zhang, L. Yan, and W. Zhang, “The Carbonation of Carbon Source and Its Choice in the Carbon Coating Treatment of LiFePO4,” Chem 72 (2009): 313–9.
  • J. Sinkkonen, V. Ovcharenko, K. N. Zelenin, I. P. Bezhan, B. A. Chakchir, F. Al‐Assar, and K. Pihlaja, “Pyridazine-5, 8-Diones and-1H-Pyrazolo [1, 2-b] Phthalazine-5, 10-Diones and Their Ring-Chain Tautomerism,” European Journal of Organic Chemistry 13 (2002): 2046–53.
  • N. Watanabe, Y. Kabasawa, Y. Takase, M. Matsukura, K. Miyazaki, H. Ishihara, K. Kodama, and H. Adachi, “4-Benzylamino-1-Chloro-6-Substituted Phthalazines: synthesis and Inhibitory Activity toward Phosphodiesterase 5,” Journal of Medicinal Chemistry 41, no. 18 (1998): 3367–72.
  • Y. Nomoto, H. Obase, H. Takai, M. Teranishi, J. Nakamura, and K. Kubo, “Studies on Cardiotonic Agents. II.: Synthesis of Novel Phthalazine and 1, 2, 3-Benzotriazine Derivatives,” Chemical & Pharmaceutical Bulletin 38, no. 8 (1990): 2179–83.
  • R. A. Kiasat, A. Mouradezadegun, and J. S. Saghanezhad, “Phospho Sulfonic Acid: A Novel and Efficient Solid Acid Catalyst for the One-Pot Preparation of 2H-Indazolo [2, 1-b]-Phthalazine-Triones,” Journal of the Serbian Chemical Society 78, no. 4 (2013): 469–76.
  • X. Feng, C. Xu, Z.-Q. Wang, S.-F. Tang, W.-J. Fu, B.-M. Ji, and L.-Y. Wang, “Aerobic Oxidation of Alcohols and the Synthesis of Benzoxazoles Catalyzed by a Cuprocupric Coordination Polymer (Cu+-CP) Assisted by TEMPO,” Inorganic Chemistry 54, no. 5 (2015): 2088–90.
  • A. J. Fatiadi, “Active Manganese Dioxide Oxidation in Organic Chemistry-Part I,” Synthesis 1976, no. 02 (1976): 65–104.
  • R. J. Taylor, M. Reid, J. Foot, and S. A. Raw, “Tandem Oxidation Processes Using Manganese Dioxide: discovery, Applications, and Current Studies,” Accounts of Chemical Research 38, no. 11 (2005): 851–69.
  • F. A. Luzzio, and F. S. Guziec, Jr, “Recent Applications of Oxochromiumamine Complexes as Oxidants in Organic Synthesis. A Review,” Organic Preparations and Procedures International 20, no. 6 (1988): 533–84.
  • T. T. Tidwell, “Oxidation of Alcohols by Activated Dimethyl Sulfoxide and Related Reactions: An Update,” Synthesis 1990, no. 10 (1990): 857–70.
  • P. J. Figiel, A. Sibaouih, J. U. Ahmad, M. Nieger, M. T. Räisänen, M. Leskelä, and T. Repo, “Aerobic Oxidation of Benzylic Alcohols in Water by 2, 2, 6, 6‐Tetramethylpiperidine‐1‐Oxyl (TEMPO)/Copper (II) 2‐N‐Arylpyrrolecarbaldimino Complexes,” Advanced Synthesis & Catalysis 351 (2009): 2625–32.
  • K. M. Gligorich, and M. S. Sigman, “Recent Advancements and Challenges of Palladium II-Catalyzed Oxidation Reactions with Molecular Oxygen as the Sole Oxidant,” Chemical Communications 2009, no. 26 (2009): 3854–67.
  • N. Mizuno, and K. Yamaguchi, “Selective Aerobic Oxidations by Supported Ruthenium Hydroxide Catalysts,” Catalysis Today 132, no. 1-4 (2008): 18–26.
  • T. Vogler, and A. Studer, “Applications of TEMPO in Synthesis,” Synthesis 2008 (2008): 1979–93.
  • R. Ciriminna, and M. Pagliaro, “Industrial Oxidations with Organocatalyst TEMPO and Its Derivatives,” Organic Process Research & Development 14 (2009): 245–51.
  • M. F. Semmelhack, C. R. Schmid, D. A. Cortes, and C. S. Chou, “Oxidation of Alcohols to Aldehydes with Oxygen and Cupric Ion, Mediated by Nitrosonium Ion,” Journal of the American Chemical Society 106, no. 11 (1984): 3374–6.
  • P. Gamez, I. W. Arends, J. Reedijk, and R. A. Sheldon, “Copper (II)-Catalysed Aerobic Oxidation of Primary Alcohols to Aldehydes,” Chemical Communications 2003, no. 19 (2003): 2414–5.
  • P. Gamez, I. W. Arends, R. A. Sheldon, and J. Reedijk, “Room Temperature Aerobic Copper–Catalysed Selective Oxidation of Primary Alcohols to Aldehydes,” Advanced Synthesis & Catalysis 346 (2004): 805–11.
  • I. E. Marko, P. R. Giles, M. Tsukazaki, I. Chelle-Regnaut, A. Gautier, R. Dumeunier, F. Philippart, K. Doda, J.-L. Mutonkole, and S. M. Brown, “Efficient, Ecologically Benign, Aerobic Oxidation of Alcohols,” Advances in Inorganic Chemistry 56 (2004): 211–40.
  • I. A. Ansari, and R. Gree, “TEMPO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes and Ketones in Ionic Liquid [Bmim][PF6,” Organic Letters 4, no. 9 (2002): 1507–9.
  • S. S. Kim, and H. C. Jung, “An Efficient Aerobic Oxidation of Alcohols to Aldehydes and Ketones with TEMPO/Ceric Ammonium Nitrate as Catalysts,” Synthesis 2003 (2003): 2135–7.
  • R. Ghahremanzadeh, G. I. Shakibaei, and A. Bazgir, “An Efficient One-Pot Synthesis of 1H-Pyrazolo [1, 2-b] Phthalazine-5, 10-Dione Derivatives,” Synlett 2008 (2008): 1129–32.
  • E. Mosaddegh, and A. Hassankhani, “A Rapid, One-Pot, Four-Component Route to 2H-Indazolo [2, 1-b] Phthalazine-Triones,” Tetrahedron Letters 52, no. 4 (2011): 488–90.
  • H. Shaterian, A. Hosseinian, and M. Ghashang, “Arkivoc 2009, ii, 59;(f) Mosaddegh, E.; Hassankhani, A,” Tetrahedron Letters 52 (2011): 488.
  • A. Hasaninejed, M. R. Kazerooni, and A. Zare, “Solvent-Free, One-Pot, Four-Component Synthesis of 2H-Indazolo [2, 1-b] Phthalazine-Triones Using Sulfuric Acid-Modified PEG-6000 as a Green Recyclable and Biodegradable Polymeric Catalyst,” Catalysis Today 196, no. 1 (2012): 148–55.
  • X. Wang, W. W. Ma, L. Q. Wu, and F. L. Yan, “Synthesis of 2H‐Indazolo [2, 1‐b] Phthalazine‐1, 6, 11 (13H)‐Trione Derivatives Using Wet Cyanuric Chloride under Solvent‐Free Condition,” Journal of the Chinese Chemical Society 57, no. 6 (2010): 1341–5.
  • G. Sabitha, C. Srinivas, A. Raghavendar, and J. S. Yadav, “Phosphomolybdic Acid (PMA)–SiO2 as a Heterogeneous Solid Acid Catalyst for the One‐Pot Synthesis of 2H‐Indazolo [1, 2‐b] Phthalazine‐Triones,” Helvetica Chimica Acta 93, no. 7 (2010): 1375–80.
  • M. Kidwai, A. Jahan, R. Chauhan, and N. K. Mishra, “Dodecylphosphonic Acid (DPA): A Highly Efficient Catalyst for the Synthesis of 2H-Indazolo [2, 1-b] Phthalazine-Triones under Solvent-Free Conditions,” Tetrahedron Letters 53, no. 14 (2012): 1728–31.
  • H. R. Shaterian, F. Khorami, A. Amirzadeh, R. Doostmohammadi, and M. Ghashang, “Preparation of Heterocyclic Containing Phthalazine Skeletons: 2Hindazolo [2, 1-b] Phthalazine-1, 6, 11 (13H)-Triones,” Journal of Iranian Chemistry Research 58 (2009): 57–62.
  • K. Mazaahir, C. Ritika, and J. Anwar, “Efficient CAN Catalyzed Synthesis of 1H-Indazolo [1, 2-b] Phthalazine-1, 6, 11-Triones: An Eco-Friendly Protocol,” Chinese Science Bulletin 57, no. 18 (2012): 2273–9.
  • M. V. Reddy, G. C. S. Reddy, and Y. T. Jeong, “Microwave-Assisted, Montmorillonite K-10 Catalyzed Three-Component Synthesis of 2H-Indazolo [2, 1-b] Phthalazine-Triones under Solvent-Free Conditions,” Tetrahedron 68, no. 34 (2012): 6820–8.
  • H. Veisi, A. A. Manesh, N. Khankhani, and R. Ghorbani-Vaghei, “Protic Ionic Liquid [TMG][Ac] as an Efficient, Homogeneous and Recyclable Catalyst for One-Pot Four-Component Synthesis of 2 H-Indazolo [2, 1-b] Phthalazine-Triones and Dihydro-1 H-Pyrano [2, 3-c] Pyrazol-6-Ones,” RSC Advances 4, no. 48 (2014): 25057–62.
  • A. Khazaei, M. A. Zolfigol, T. Faal Rastegar, G. Chehardoli, and S. Mallakpour, “Melamine Trisulfonic Acid (MTSA) as an Efficient Catalyst for the Synthesis of Triazolo [1, 2-a] Indazole-Triones and Some 2H-Indazolo [2, 1-b] Phthalazine-Triones,” Iranian Journal of Catalysis 3 (2013): 211–20.
  • L. Nagarapu, R. Bantu, and H. B. Mereyala, “TMSCl‐Mediated One‐Pot, Three‐Component Synthesis of 2H‐Indazolo [2, 1‐b] Phthalazine‐Triones,” Journal of Heterocyclic Chemistry 46, no. 4 (2009): 728–31.
  • W. Scheeren, “A Convenient Catalytic Synthesis of 2H-Indazolo [2, 1-b] Phthalazine-Triones on Reusable Silica Supported Preyssler Heteropolyacid,” Bulgarian Chemical Communications 45 (2013): 64–70.
  • J. M. Khurana, and D. Magoo, “Efficient One-Pot Syntheses of 2H-Indazolo [2, 1-b] Phthalazine-Triones by Catalytic H2SO4 in Water–Ethanol or Ionic Liquid,” Tetrahedron Letters 50, no. 52 (2009): 7300–3.
  • M. R. Nabid, S. J. T. Rezaei, R. Ghahremanzadeh, and A. Bazgir, “Ultrasound-Assisted One-Pot, Three-Component Synthesis of 1H-Pyrazolo [1, 2-b] Phthalazine-5, 10-Diones,” Ultrasonics Sonochemistry 17, no. 1 (2010): 159–61.
  • J.-H. Li, J.-L. Li, and Y.-X. Xie, “TBAB-Promoted Ligand-Free Copper-Catalyzed Cross-Coupling Reactions of Aryl Halides with Arylboronic Acids,” Synthesis 2007, no. 7 (2007): 984–8.
  • B.-X. Tang, F. Wang, J.-H. Li, Y.-X. Xie, and M.-B. Zhang, “Reusable Cu2O/PPh3/TBAB System for the Cross-Couplings of Aryl Halides and Heteroaryl Halides with Terminal Alkynes,” The Journal of Organic Chemistry 72, no. 16 (2007): 6294–7.
  • C. Wang, T. Hang, and H. Zhang, “Microwave-Promoted N-Alkylation of Acridones without Solvent,” Synthetic Communications 33, no. 3 (2003): 451–6.
  • C. R. Johnson, and O. M. Lavergne, “Alkylation of Sulfoximine and Related Compounds at the Imino Nitrogen under Phase-Transfer Conditions,” The Journal of Organic Chemistry 58, no. 7 (1993): 1922–3.
  • K. Majumdar, S. Sarkar, and S. Ghosh, “Studies in Thio‐Claisen Rearrangement: Regioselective Synthesis of Thiopyrano [2, 3‐b] Pyran‐2‐Ones and Thieno [2, 3‐b] Pyran‐2‐Ones,” Synthetic Communications 34, no. 7 (2004): 1265–75.
  • H. Lebel, S. Morin, and V. Paquet, “Alkylation of Phosphine Boranes by Phase-Transfer Catalysis,” Organic Letters 5, no. 13 (2003): 2347–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.