369
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Experimental and Theoretical Exploration of Aryl Substituent Effects on the Electronic Properties of Asymmetric 4,7-Di(thiophene-2-yl)-benzo[c][2,1,5]thiadiazole Compounds

, , , , , , , & show all
Pages 711-726 | Received 05 Feb 2020, Accepted 28 Mar 2020, Published online: 13 Apr 2020

References

  • Y. Liu, H. Lai, H. Zhong, E. Xu, J. Du, Y. Li, and Q. Fang, “New Low Bandgap Molecules Based on Ethylene-Separated Benzothiadiazoles: Synthesis and Bandgap,” Tetrahedron Letters 51, no. 33 (2010): 4462–5.
  • S. Langis-Barsetti, T. Maris, and J. Wuest, “Molecular Organization of 2,1,3-Benzothiadiazoles in the Solid State,” The Journal of Organic Chemistry 82, no. 10 (2017): 5034–45.
  • D. Gil and C. Wilkinson, “Structure-Activity Relationships of 1,2,3-Benzothiadiazole Insecticide Synergists as Inhibitors of Microsomal Oxidation,” Pesticide Biochemistry and Physiology 7, no. 2 (1977): 183–93.
  • J. Zhang, W. Chen, A. Rojas, E. Jucov, T. Timofeeva, T. Parker, S. Barlow, and S. Marder, “Controllable Direct Arylation: Fast Route to Symmetrical and Unsymmetrical 4,7-Diaryl-5,6-Difluoro-2,1,3-Benzothiadiazole Derivatives for Organic Optoelectronic Materials,” Journal of the American Chemical Society 135, no. 44 (2013): 16376–9.
  • T. Sukhikh, D. Ogienko, D. Bashirov, N. Kurat’Eva, A. Smolentsev, and S. Konchenko, “Controllable Direct Arylation: Fast Route to Symmetrical and Samarium, Europium and Gadolinium Complexes with 4-(2,1,3-Benzothiadiazol-Ylamino)Pent-3-en-2-Onates,” Russian Journal of Coordination Chemistry 45, no. 1 (2019): 30–5.
  • J. Kim, H. Choi, J. Lee, M.-S. Kang, K. Song, S. Kang, and J. Ko, “A Polymer Gel Electrolyte to Achieve ≥6% Power Conversion Efficiency with a Novel Organic Dye Incorporating a Low-Band-Gap Chromophore,” Journal of Materials Chemistry 18, no. 43 (2008): 5223–9.
  • J.-L. Wang, Y. Zhou, Y. Li, and J. Pei, “Solution-Processable Gradient Red-Emitting π-Conjugated Dendrimers Based on Benzothiadiazole as Core: Synthesis, Characterization, and Device Performances,” The Journal of Organic Chemistry 74, no. 19 (2009): 7449–56.
  • A. Thangthong, N. Prachumrak, T. Sudyoadsuk, S. Namuangruk, T. Keawin, S. Jungsuttiwong, N. Kungwan, and V. Promarak, “Muti-Triphenylamine-Functionalized Dithienylbenzothiadiazoles as Hole-Transporting Non-Doped Red Emitters for Efficient Simple Solution Processed Pure Red Organic Light-Emitting Diodes,” Organic Electronics 21, no. 117 (2015): 117–25.
  • X. Zhang, R. Yamaguchi, K. Moriyama, M. Kadowaki, T. Kobayashi, T. Ishi-I, T. Thiemann, and S. Mataka, “Highly Dichroic Benzo-2,1,3-Thiadiazole Dyes Containing Five Linearly π-Conjugated Aromatic Residues, with Fluorescent Emission Ranging from Green to Red, in a Liquid Crystal Guest-Host System,” Journal of Materials Chemistry 16, no. 8 (2006): 736–40.
  • Ö. Celikbilek, M. Ícli-Özkut, F. Algi, A. Önal, and A. Cihaner, “Donor-Acceptor Polymer Electrochromes with Cyan Color: Effect of Alkyl Chain Length on Doping Processes,” Organic Electronics 13, no. 1 (2012): 206–13.
  • M. İçli, M. Pamuk, F. Algi, A. M. Önal, and A. Cihaner, “Donor-Acceptor Polymer Electrochromes with Tunable Colors and Performance,” Chemistry of Materials 22, no. 13 (2010): 4034–44.
  • M. Jayakannan, P. Van Hal, and R. Janssen, “Synthesis and Structure-Property Relationship of New Donor-Acceptor-Type Conjugated Monomers and Polymers on the Basis of Thiophene and Benzothiadiazole,” Journal of Polymer Science Part A: Polymer Chemistry 40, no. 2 (2002): 251–61.
  • A. Mishra and P. Bäuerle, “Small Molecule Organic Semiconductors on the Move: Promises for Future Solar Energy Technology,” Angewandte Chemie International Edition 51, no. 9 (2012): 2020–67.
  • J. Pina, J. S. de Melo, D. Breusov, and U. Scherf, “Donor-Acceptor-Donor Thienyl/Bithienyl-Benzothiadiazole/Quinoxaline Model Oligomers: Experimental and Theoretical Studies,” Physical Chemistry Chemical Physics 15, no. 36 (2013): 15204–13.
  • M. Ícli and C. Us, “Expanding the Realm of Soluble Narrow Band Gap Polymers with a Benzobisthiadiazole Derivative,” Macromolecules 49, no. 8 (2016): 3009–15.
  • E. Bundgaard and F. Krebs, “Low-Band-Gap Conjugated Polymers Based on Thiophene, Benzothiadiazole, and Benzobis (Thiadiazole).” Macromolecules 39, no. 8 (2006): 2823–31.
  • M. Abdulrazzaq, M. Ícli, G. Gokce, S. Ertan, E. Tutuncu, and A. Cihaner, “A Low Band Gap Polymer Based on Selenophene and Benzobis (Thiadiazole),” Electrochimica Acta 249, no. 20 (2017): 189–97.
  • F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, and P. Alnot, “Molecular Engineering of Organic Semiconductors: Design of Self-Assembly Properties in Conjugated Thiophene Oligomers,” Journal of the American Chemical Society 115, no. 19 (1993): 8716–21.
  • P. Anant, N. Lucas, and J. Jacob, “A Simple Route toward the Synthesis of Bisbenzothiadiazole Derivatives,” Organic Letters 10, no. 24 (2008): 5533–6.
  • E. Bundgaard and F. Krebs, “Low Band Gap Polymers for Organic Photovoltaics,” Solar Energy Materials and Solar Cells 91, no. 11 (2007): 954–85.
  • S. Shaheen, C. Brabec, S. Sariciftci, F. Padinger, T. Fromherz, and J. Hummelen, “2.5% Efficient Organic Plastic Solar Cells,” Applied Physics Letters 78, no. 6 (2001): 841–3.
  • M. Karakus, A. Balan, D. Baran, L. Toppare, and A. Cirpan, “Electrochemical and Optical Properties of Solution Processable Benzotriazole and Benzothiadiazole Containing Copolymers,” Synthetic Metals 162, no. 1–2 (2012): 79–84.
  • E. Cansu-Ergun, M. Akbayrak, A. Akdag, and A.-M. Önal, “Effect of Thiophene Units on the Properties of Donor Acceptor Type Monomers and Polymers Bearing Thiophene-Benzothiadiazole-Scaffolds,” Journal of the Electrochemical Society 163, no. 10 (2016): G153–G158.
  • Y. Jeon, T. Kim, J.-J. Kim, and J.-I. Hong, “Vacuum-Depositable Thiophene-and Benzothiadiazole-Based Donor Materials for Organic Solar Cells,” New Journal of Chemistry 39, no. 12 (2015): 9591–5.
  • M. Paramasivam, A. Gupta, A. Raynor, S. Bhosale, K. Bhanuprakash, and V. Rao, “Small Band Gap D-π-A-π-D Benzothiadiazole Derivatives with Low-Lying HOMO Levels as Potential Donors for Applications in Organic Photovoltaics: A Combined Experimental and Theoretical Investigation,” RSC Advances 4, no. 67 (2014): 35318–31.
  • Y. Farré, M. Raissi, A. Fihey, Y. Pellegrin, E. Blart, D. Jacquemin, and F. Odobel, “Synthesis and Properties of New Benzothiadiazole-Based Push-Pull Dyes for p-Type Dye Sensitized Solar Cells,” Dyes and Pigments 148 (2018): 154–66.
  • F. Teixeira, C. Rangel, and A. Teixeira, “New Azaheterocyclic Aromatic Diphosphonates for Hybrid Materials for Fuel Cell Applications,” New Journal of Chemistry 37, no. 10 (2013): 3084–91.
  • M. Ícli-Özkut, H. Ipek, B. Karabay, A. Cihaner, and A. Önal, “Furan and Benzochalcogenodiazole Based Multichromic Polymer via a Donor-Acceptor Approach,” Polymer Chemistry 4, no. 8 (2013): 2457–616.
  • K. Pilgram, M. Zupan, and R. Skiles, “Bromination of 2,1,3-Benzothiadiazoles,” Journal of Heterocyclic Chemistry 7, no. 3 (1970): 629–33.
  • Bruker, SAINT (V8.38A) (Madison, WI: Bruker AXS Inc., 2018).
  • G. M. Sheldrick, SADABS, Version 2016/2 (Madison, WI: Bruker-AXS, 2018).
  • G. Sheldrick, “A Short History of SHELX,” Acta Crystallographica Section A: Foundations of Crystallography 64, no. 1 (2008): 112–22.
  • J. Heiskanen, P. Vivo, N. Saari, T. Hukka, T. Kastinen, K. Kaunisto, H. Lemmetyinen, and O. Hormi, “Synthesis of Benzothiadiazole Derivatives by Applying C-C Cross-Couplings,” The Journal of Organic Chemistry 81, no. 4 (2016): 1535–46.
  • A. Saeki, S. Yoshikawa, M. Tsuji, Y. Koizumi, M. Ide, C. Vijayakumar, and S. Seki, “A Versatile Approach to Organic Photovoltaics Evaluation Using White Light Pulse and Microwave Conductivity,” Journal of the American Chemical Society 134, no. 46 (2012): 19035–42.
  • L. Chen, P. Ren, and P. Carrow, “Tri(1-Adamantyl)Phosphine: Expanding the Boundary of Electron-Releasing Character Available to Organophosphorus Compounds,” Journal of the American Chemical Society 138, no. 20 (2016): 6392–5.
  • Y. Li, L. Scudiero, T. Ren, and W.-J. Dong, “Synthesis and Characterizations of Benzothiadiazole-Based Fluorophores as Potential Wavelength Shifting Materials,” Journal of Photochemistry and Photobiology A: Chemistry 231, no. 1 (2012): 51–9.
  • D. C. Harris, Análisis Químico Cuantitativo (Barcelona, Spain: Editorial Reverté, 1999).
  • B. A. DaSilveira Neto, A. S. Lopes, G. Ebeling, R. S. Gonçalves, V. E. U. Costa, F. H. Quina, and J. Dupont, “Photophysical and Electrochemical Properties of π-Extended Molecular 2,1,4-Benzothiadiazoles,” Tetrahedron 61, no. 46 (2005): 10975–86.
  • E. Carlson, A. Riel, and B. Dahl, “Donor-Acceptor Biaryl Lactones: pH Induced Molecular Switches with Intramolecular Charge Transfer Modulation,” Tetrahedron Letters 53, no. 46 (2012): 6245–9.
  • R. Wopschall and I. Shain, “Effects of Adsorption of Electroactive Species in Stationary Electrode Polarography,” Analytical Chemistry 39, no. 13 (1967): 1514–27.
  • E. Cansu-Ergun, “Covering the More Visible Region by Electrochemical Copolymerization of Carbazole and Benzothiadiazole Based Donor-Acceptor Type Monomers,” Chinese Journal of Polymer Science 37, no. 1 (2019): 28–35.
  • S. Trasatti, “The Absolute Electrode Potential: An Explanatory Note,” Pure and Applied Chemistry 58, no. 7 (1986): 955–66.
  • M. Flores-Leonar, R. Moreno-Esparza, V. Ugalde-Saldívar, and C. Amador-Bedolla, “Further Insights in DFT Calculations of Redox Potential for Iron Complexes: The Ferrocenium/Ferrocene System,” Computational and Theoretical Chemistry 1099 (2017): 167–73.
  • Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, et al., “Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package,” Molecular Physics 113, no. 2 (2015): 184–215.
  • W. Song, L. Gao, T. Zhang, J. Huang, and J. Su, “[1,2,4]Triazolo[1,5-a]Pyridine Based Host Materials for High-Performance Red PhOLEDs with External Quantum Efficiencies over 23%,” Journal of Luminescense 206 (2019): 386–92.
  • S. Lopez, B. Sanchez-Lengeling, J. Soares, and A. Aspuru-Guzik, “Design Principles and Top Non-Fullerene Acceptor Candidates for Organic Photovoltaics,” Joule 1, no. 4 (2017): 857–70.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.