285
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

A Metal Free, Hantzsch Synthesis for Privileged Scaffold 1, 4-Dihydropyridines: A Glycerol Promoted Sustainable Protocol

, , , , &
Pages 1035-1047 | Received 13 Dec 2019, Accepted 30 Apr 2020, Published online: 19 May 2020

References

  • B. B. Toure, and D. G. Hall, “Natural Product Synthesis Using Multicomponent Reaction Strategies,” Chemical Reviews 109, no. 9 (2009): 4439–86.
  • A. Kumar, M. K. Gupta, and M. Kumar, “Micelle Promoted Supramolecular Carbohydrate Scaffold-Catalyzed Multicomponent Synthesis of 1,2-Dihydro-1-Aryl-3H-Naphth[1,2-e][1,3]Oxazin-3-One and Amidoalkyl Naphthols Derivatives in Aqueous Medium,” RSC Advances 2, no. 19 (2012): 7371–6.
  • E. Ruijter, R. Scheffelaar, and R. V. A. Orru, “Multicomponent Reaction Design in the Quest for Molecular Complexity and Diversity,” Angewandte Chemie (International ed. in English) 50, no. 28 (2011): 6234–46.
  • (a) S. M. Gomha, Z. A. Muhammad, M. R. Abdel-aziz, H. M. Abdel-aziz, H. M. Gaber, and M. M. Elaasser,”One-Pot Synthesis of New Thiadiazolyl-Pyridines as Anticancer and Antioxidant Agents,” Journal of Heterocyclic Chemistry, 55, no. 2 (2018); 530–36; (b) S. M. Gomhal, M. M. Edrees, R. A. M. Faty, Z. A. Muhammad, and Y. N. Mabkhot,”Microwave-assisted one pot three-component synthesis of some novel pyrazole scafolds as potent anticancer agents,” Chemistry Central Journal, 11 (2017): 37. DOI: https://doi.org/10.1186/s13065-017-0266-4; (c) M. G. Sharma, J. Pandya, D. M. Patel, R. M. Vala, V. Ramkumar, R. Subramanian, V. K. Gupta, R. L. Gardas, A. Dhanasekaran, and H. M. Patel,”One-Pot Assembly for Synthesis of 1,4-Dihydropyridine Scaffold and Their Biological Applications,” Polycyclic Aromatic Compounds, 39 (2019): DOI: https://doi.org/10.1080/10406638.2019.1686401; (d) M. G. Sharma, R. M. Vala, D. M. Patel, I. Lagunes, M. X. Fernandes, J. M. Padrón, V. Ramkumar R. L. Gardas, and H. M. Patel “Anti-Proliferative 1,4-Dihydropyridine and Pyridine Derivatives Synthesized through a Catalyst-Free, One-Pot Multi-Component Reaction,” ChemistrySelect 3, no. 43 (2018): 12163–68; (e) D. M. Patel, M. G. Sharma, R. M. Vala, I. Lagunes, A. Puerta, J. M. Padrón, D. P. Rajanic, and H. M. Patel,”Hydroxyl alkyl ammonium ionic liquid assisted green and one-pot regioselective access to functionalized pyrazolodihydropyridine core and their pharmacological evaluation,” Bioorganic Chemistry 86 (2019): 137–50; (f) S. M. Gomha, Zeina, A. Muhammad, H. M. Abdel-aziz, I. K., and Matar, A. A. El-Sayed,”Green Synthesis, Molecular Docking and Anticancer Activity of novel 1,4-dihydropyridine-3,5-Dicarbohydrazones Under Grind-stone Chemistry,” Green Chemistry Letters and Reviews 13, no. 1 (2020): 6–17; (g) E. M. H. Abbas, Sobhi M. Gomha, and T. A. Farghaly,”Multicomponent Reactions for Synthesis of Bioactive Polyheterocyclic Ring Systems Under Controlled Microwave Irradiation,” Arabian Journal of Chemistry 7, no. 5 (2014): 623–29.
  • (a) L. Costantino and D. Barlocco, “Privileged Structures as Leads in Medicinal Chemistry,” Current Medicinal Chemistry 13 (2006): 65–85; (b) A. A.Patchett, and R. P. Nargund,. “Chapter 26. Privileged Structures - An Update,” Annual Reports in Medicinal Chemistry 35, no. 1 (2000): 289–98.
  • (a) Y.M. Shchekotikhin, T.G. Nikolaeva, G.M. Shub, and A.P. Kriven’ko, “Synthesis and Antimicrobial Activity of Substituted 1,8-Dioxodecahydroacridines,” Pharmaceutical Chemistry Journal, 35, no. 4, (2001): 206–8; (b) K. Palani, D. Thirumalai, P. Ambalavanan, M.N. Ponnuswamy, and V.T. Ramakrishnan, “Synthesis and Characterization of 9-(4-nitrophenyl)- 3,3,6,6-Tetramethyl-3,4,6,7,9,10-Hexahydro-1,8(2H,5H) Acridinedione and Its Methoxyphenyl Derivative,” Journal of Chemical Crystallography 35, no. 10 (2005): 751–60; (c) M. J. Wainwright, “Acridine-a Neglected Antibacterial Chromophore,” Journal of Antimicrobial Chemotherapy 47 (2001); 1–13; (d) L. Ngadi, A. M. Galy, J. P. Galy, J. Barbe, A. Cremieux, J. Chevalier, and D. Sharples, “Some New 1-nitro Acridine Derivatives as Antimicrobial Agents,” European Journal of Medicinal Chemistry 25, no. 1 (1990): 67–70; (e) A. Srivastava and C. Nizamuddin,” Synthesis and Fungicidal Activity of Some Acridine Derivatives,” Indian Journal of Heterocyclic Chemistry 13, (2004): 261–64.
  • H. Mohan, N. Srividya, P. Ramamurthy, and J. P. Mittal, ” “Kinetics and Spectral Characteristics of Transient Species Formed on One-Electron Oxidation of Acridine-l,tI-Dione in Aqueous Solution Pulse Radiolysis Study,”Journal of the Chemical Society, Faraday Transactions 92, no. 13 (1996): 2353–9.
  • N. Srividya, P. Ramamurthy, P. Shanmugasundaram, and V. T. Ramakrishnan, “Synthesis, Characterization, and Electrochemistry of Some Acridine-1,8-Dione Dyes,”The Journal of Organic Chemistry 61 no. 15 (1996): 5083–9.
  • (a) M. Kidwai and D. Bhatnagar, “Ceric ammonium Nitrate (CAN) Catalyzed Synthesis of N-Substituted Decahydroacridine-1,8-diones in PEG,” Tetrahedron Letters 51, no. 20 (2010): 2700–03; (b) K. K. Pasunooti, C. N. Jensen, H. Chai, M. Li Leow, D.-W. Zhang, and X.-W. Liu, “Microwave-Assisted Copper(II)-Catalyzed One-Pot Four-Component Synthesis of Multifunctionalized Dihydropyridines,” Journal Combinatorial Chemistry 12, no.4 (2010): 577–81; (c) K. Venkatesan, S.S. Pujari, and K.V. Srinivasan, “Proline-Catalyzed Simple and Efficient Synthesis of 1,8- Dioxo-decahydroacridines in Aqueous Ethanol Medium,” Synthetic Communications 39, no. 2 (2008): 228–41; (d) M. Li, Z. Zuo, L. Wen, and S. Wang,”Microwave-Assisted Combinatorial Synthesis of Hexa-Substituted 1,4-Dihydropyridines Scaffolds Using One-Pot Two-Step Multicomponent Reaction followed by a S-Alkylation,” Journal Combinatorial Chemistry 10, no. 3 (2008): 436–41; (e) J. Briede, M. Stivrina, B. Vigante, D. Stoldere, and G. Duburs, “Acute Effect of Antidiabetic 1,4-dihydropyridine Compound Cerebrocrast on Cardiac Function and Glucose Metabolism in the Isolated, Perfused Normal Rat Heart,” Cell Biochemistry and Function 26 (2008): 238–45; (f) J. R. Goodell, A. A. Madhok, H. Hiasa, and D.M. Ferguson, “Synthesis and Evaluation of Acridine- and Acridone-based Anti-herpes Agents with Topoisomerase Activity,” Bioorganic & Medicinal Chemistry 14 (2006); 5467–80; (g) M. F. Gordeev, D.V. Patel, E.M. Gordon, “Approaches to Combinatorial Synthesis of Heterocycles: A Solid-Phase Synthesis of 1,4-Dihydropyridines,” Journal of Organic Chemistry 61, no. 3 (1996): 924–28; (h) R. Mannhold, B. Jablonka, and W. Voigdt, “Calcium- and Calmodulin-Antagonism of Elnadipine Derivatives: Comparative SAR,” European Journal of Medicinal Chemistry 27, no. 3 (1992): 229–35.
  • (a) H. W. Lee, S. J. Shin, H. Yu, S. K. Kang, and C. L. Yoo, “A Novel Chiral Resolving Reagent, Bis((S)-Mandelic Acid)-3-Nitrophthalate, for Amlodipine Racemate Resolution: Scalable Synthesis and Resolution Process,” Organic Process Research & Development, 13, (2009): 1382–86; (b) C. Safak and R. Simsek, “Fused 1,4-Dihydropyridines as Potential Calcium Modulatory Compounds,Mini-Reviews in Medicinal Chemistry 6 (2006): 747–55.
  • A. L. Wang, C. Ladecola, and G. Wang, “New Generations of Dihydropyridines for Treatment of Hypertension,”Journal of Geriatric Cardiology 14, no. 1 (2017): 67–72.
  • D. J. Triggle, “1,4-Dihydropyridines as Calcium Channel Ligands and Privileged Structures,”Cellular and Molecular Neurobiology 23, no. 3 (2003): 293–03.
  • (a) M. F. Gordeev, D. V. Patel, B. P. England, S. Jonnalagadda, J. D. Combs and E. M. Gordon, “Combinatorial Synthesis and Screening of a Chemical Library of 1,4-Dihydropyridine Calcium Channel Blockers,” Bioorganic & Medicinal Chemistry 60, no. 6 (1998): 883–89; (b) D. J. Surmeier, “Calcium, Ageing, and Neuronal Vulnerability in Parkinson’s Disease,” Lancet Neurology 6 (2007): 933–938; (c) M. Drigelova,B. Tarabova, G. Duburs, and L. Lacinova, “The Dihydropyridine Analogue Cerebrocrast Blocks Both T-type and L-type Calcium Currents,” Canadian Journal of Physiology and Pharmacology 87, (2009): 923–32; (d) K. Cooper, M. J. Fray, and M. J. Parry, “1,4-Dihydropyridines as Antagonists of Platelet Activating Factor. 1. Synthesis and Structure-Activity Relationships of 2-(4-Heterocyclyl)phenyl Derivatives,” Journal of Medicinal Chemistry 35, no. 17 (1992): 3115–29; (e) I. Antonini, P. Polucci, A. Magnano, D. Cacciamani, M.T. Konieczny, J.P. Lukowicz, and S. Martelli, “Rational Design, Synthesis and Biological Evaluation of Thiadiazinoacridines: A New Class of Antitumor Agents,” Bioorganic & Medicinal Chemistry 11, (2003): 399–05; (f) Z. Nasresfahani and M.Z. Kassaee, “Mesoporous Silica Nanoparticles in an Effificient, Solvent-free, Green Synthesis of Acridinediones,” Catalysis Communications 60 (2015): 100–04.
  • N. M. Evdokimov, A. S. Kireev, A. A. Yakovenko, M. Yu. Antipin, I. V. Magedov, and A. Kornienko, “One-Step Synthesis of Heterocyclic Privileged Medicinal Scaffolds by a Multicomponent Reaction of Malononitrile with Aldehydes and Thiols,”The Journal of Organic Chemistry 72, no. 9 (2007): 3443–53.
  • (a) A. Velena, N. Zarkovic, K. G. Troselj, E. Bisenieks, A. Krauze, J. Poikans, and G. Duburs,”1,4-Dihydropyridine Derivatives: Dihydronicotinamide Analogues-Model Compounds Targeting Oxidative Stress,” Oxidative Medicine and Cellular Longevity (2016): DOI: https://doi.org/10.115/2016/1892412; (b) M. Bartolini and J. Marco-Contelles, “Tacrines as Therapeutic Agents for Alzheimer’s Disease. IV. The Tacripyrines and Related Annulated Tacrines,” The Chemical Record 18, no. 1 (2018): 1–12; (c) G. Kohlhagen, K. D. Paull, M. Cushman, P. Nagafuji, and Y. Pommier, “Protein-Linked DNA Strand Breaks Induced by NSC 314622, a Novel Noncamptothecin Topoisomerase I Poison”, Molecular Pharmacology 54, no. 1 (1998): 50–8.
  • (a) A. Zhu, R. Liu, C. D, and L. Li,”Betainium-based Ionic Liquids Catalysed Multicomponent Hantzsch Reactions for the Efficient Synthesis of Acridinediones,” RSC Advances 7, no. 11 (2017): 6679–84; (b) H. G. O. Alvima, G. A. Bataglion, L. M. Ramos, A. L. De Oliveira, H. C. B. de Oliveira, M. N. Eberlin, J. L. De Macedo, W. A. da Silva, and B. A. D. Neto,”Task-specific Ionic Liquid Incorporating Anionic Heteropolyacid Catalysed Hantzsch and Mannich Multicomponent Reactions. Ionic Liquid Effect Probed by ESI-MS(/MS):”Tetrahedron 70, no. 20 (2014): 3306–13; (c) L. Wang, K.-Q. Zhu, Q. Chen, and M.-Y. He,”Facile and Green Synthesis of Hantzsch Derivatives in Deep Eutectic Solvent,”Green Processing and Synthesis 3 (2014): 457–61; (d) Y. L. N. Murthy, A. Rajack, M. T. Ramji, J. J. babu, C. Praveen, and K. A. Lakshmi, “Design, Solvent Free Synthesis, and Antimicrobial Evaluation of 1,4 Dihydropyridines,” Bioorganic & Medicinal Chemistry Letters 22, no. 18 (2012): 6016–23; (e) Z. Zareia and B. Akhlaghinia, “ZnII Doped and Immobilized on Functionalized Magnetic Hydrotalcite (Fe3O4/HT-SMTU-ZnII): A Novel, Green and Magnetically Recyclable Bifunctionalnanocatalyst for One-pot Multi-component Synthesis of Acridinediones Under Solvent-free Conditions,” New Journal of Chemistry 41, no. 24 (2017): 15485–500; (f) V. V. Srinivasan, M.P. Pachamuthu, and R. Maheswari,”Lewis Acidic Mesoporous Fe-TUD-1 as Catalysts for Synthesis of Hantzsch 1,4-dihydropyridine Derivatives,”Journal of Porous Materials 22, no. 5 (2015): 1187–94; (g) K. B. Ramesh and M. A. Pasha, “Study on One-pot four-component Synthesis of 9-aryl-hexahydroacridine-1,8-diones Using SiO2–I as a New Heterogeneous Catalyst and Their Anticancer Activity,” Bioorganic Medicinal Chemistry Letters 24 (2014): 3907–13; (h) S. Karhale, C. Bhenki, G. Rashinkarand, and V. Helavi, “Covalently Anchored Sulfamic Acid on Cellulose as Heterogeneous Solid Acid Catalyst for the Synthesis of Structurally Symmetrical and Unsymmetrical 1,4-dihydropyridine Derivatives,” New Journal of Chemistry 41, no. 12 (2017): 5133–41; (i) K. Venkatesan, S.S. Pujari, and K.V. Srinivasan, “Proline-Catalyzed Simple and Efficient Synthesis of 1,8- Dioxo-decahydroacridines in Aqueous Ethanol Medium,”Synthetic Communications 39, no. 3, (2009): 228–41; (j) M. G. Sharma, D. P. Rajani, and H. M. Patel,”Green Approach for Synthesis of Bioactive Hantzsch 1,4-dihydropyridine Derivatives Based on Thiophene Moiety Via Multicomponent Reaction,” Royal Society of Open Sciences 4 (2017): 170006. DOI: https://doi.org/10.1098/rsos.170006.
  • S. Singh, M. Saquib, S. B. Singh, M. Singh, and J. Singh, “Catalyst Free, Multicomponent-Tandem Synthesis of Spirooxindole-Indazolones and Spirooxindole-Pyrazolines: A Glycerol Mediated Green Approach,”RSC Advances 5, no. 56 (2015): 45152–7.
  • (a) Y. Gu and F. Jerome, “Glycerol as a Sustainable Solvent for Green Chemistry,” Green Chemistry 12, no. 7 (2010): 1127–38; (b) Y. Guand, F. Jerome, “Bio-based Solvents: An Emerging Generation of Fluids for the Design of eco-efficient Processes in Catalysis and Organic Chemistry,” Chemical Society Reviews 42 (2013): 9550–70; (c) A. Wolfson, C. Dlugy, D. Tavor, J. Blumenfeld, and Y. Shotland, “Baker’s Yeast Catalyzed Asymmetric Reduction in Glycerol,”Tetrahedron: Asymmetry 17 (2006): 2043–45; (d) P. Cintas, S. Tagliapietra, E. C. Gaudino, G. Palmisanoc, and G. Cravotto, “Glycerol: A Solvent and Building Block of Choice for Microwave and Ultrasound Irradiation Procedures,”Green Chemistry 16, no. 3 (2014): 1056–65.
  • Y. Gu, “Multicomponent Reactions in Unconventional Solvents: State of the Art,”Green Chemistry 14, no. 8 (2012): 2091–28.
  • H. R. Safaei, M. Shekouhy, S. Rahmanpur, and A. Shirinfeshan, “Glycerol as a Biodegradable and Reusable Promoting Medium for the Catalyst-Free One-Pot Three Component Synthesis of 4H-Pyrans,”Green Chemistry 14, no. 6 (2012): 1696–1704.
  • V. B. Yadav, P. Rai, H. Sagir, A. Kumar, and I. R. Siddiqui, “Catalyst-Free Synthesis for Pyrazole-Fused Isocoumarins in Recyclable and Biodegradable Reaction Medium,” Chemistryselect 2, no. 27 (2017): 8320–5.
  • (a) F. Chahdoura, S. M. Ladeira, and M. Gomez,”Palladium Nanoparticles in Glycerol: A Clear-cut Catalyst for One-pot Multi-step Processes Applied in the Synthesis of Heterocyclic Compounds,” Organic Chemistry Frontiers 2, no. 4 (2015): 312–18; (b) J. M. Bhojane, S. A. Sarode, and J. M. Nagarkar, “Nickel–glycerol: An Efficient, Recyclable Catalysis System for Suzuki Cross Coupling Reactions Usingaryl Diazonium Salts,”New Journal of Chemistry 40, no. 2 (2016): 1564–70.
  • (a) A. Ibad, M. A. Waseem, F. Ibad, K. Ansari, A. M. Lone, G. Watal, and I. R. Siddiqui, “A Green Access to Tetrahydro-1H-pyrano[2,3-d] Pyrimidines: Visible-Light-Triggered and Ethylene-Glycol-Mediated Multicomponent One-Pot Process,” ChemistrySelect 2, no. 17 (2017): 4587–92; (b) K. N. Shivhare; M. K. Jaiswal; A. Srivastava; S. K. Tiwari; I.R. Siddiqui, “Visible-light-activated C–C and C–N Bond Formation in the Synthesis of Imidazo[1,2-a]Pyridines and Imidazo[2,1-b]Thiazoles Under Catalyst and Solvent-free Conditions,” New Journal of Chemistry 42, no. 20 (2018): 16591–601; (c) K.N. Shivhare, I. R. Siddiqui, “β-Cyclodextrin Mediated Synthesis of Indole Derivatives: Reactions of Isatins with 2-amino(or 2-thiole)Anilines by Supramolecular Catalysis in Water,” Supramolecular Chemistry 31, no. 1 (2019): 52–61; (d) K.N. Shivhare, I. R. Siddiqui, “Chitosan: A Natural and Sustainable Polymeric Organocatalyst for C–C Bond Formation During the Synthesis of 5-Amino-2,3-Dihydrobenzo[d]thiazole-4,6-Dicarbonitriles,” Current Organocatalysis; DOI: https://doi.org/10.2174/2213337205666180925142458.
  • (a) G. M. Ziarani, A. Badiei, M. Hassanzadeh, and S. Mousavi, “Synthesis of 1,8-dioxo-Decahydroacridine Derivatives Using Sulfonic Acid Functionalized Silica (SiO2-Pr-SO3H) Under Solvent Free Conditions,”Arabian Journal of Chemistry 7, no. 3 (2014): 335–39; (b) B. Dam, S. Nandi and A. K. Pal, “An Efficient ‘on-water’ Synthesis of 1,4-dihydropyridines Using Fe3O4@SiO2 Nanoparticles as a Reusable Catalyst,”Tetrahedron Letters 55, no. 38 (2014): 5236–40; (c) I. Pugazhenthi, S. M. Ghouse, F.-R. N. Khan, E. D. Jeong, J. S. Bae, J. P. Kim, E. H. Chun,Y. S. Kumar, and C. Dasaradhan, “Water Mediated Reactions: TiO2 and ZnO Nanoparticle Catalyzed Multi Component Domino Reaction in the Synthesis of Tetrahydroacridinediones, Acridindiones, Xanthenones and Xanthenes,”RSC Advances 5, no. 22, (2015): 17257–68.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.