304
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Mechanochemical Approach for the Selective Synthesis of 1,2-Disubstituted Benzimidazoles and Their Molecular Docking Studies

, , , , , & show all
Pages 1201-1219 | Received 06 Apr 2020, Accepted 10 May 2020, Published online: 23 May 2020

References

  • E. Menteşe, F. Yılmaz, N. Baltaş, O. Bekircan, and B. Kahveci, “Synthesis and Antioxidant Activities of Some New Triheterocyclic Compounds Containing Benzimidazole, Thiophene, and 1,2,4-triazole rings,” Journal of Enzyme Inhibition and Medicinal Chemistry 30, no. 3 (2015): 435–41.
  • Z. Ates-Alagoz, “Antimicrobial Activities of 1-H-Benzimidazole-Based Molecules,” Current Topics in Medicinal Chemistry 16, no. 26 (2016): 2953–62.
  • E. Menteşe, H. Bektaş, B. B. Sokmen, M. Emirik, D. Çakır, and B. Kahveci, “Synthesis and Molecular Docking Study of Some 5,6-Dichloro-2-Cyclopropyl-1H-Benzimidazole Derivatives Bearing Triazole, Oxadiazole, and Imine Functionalities as Potent Inhibitors of Urease,” Bioorganic & Medicinal Chemistry Letters 27, no. 13 (2017): 3014–8.
  • J. Velik, V. Baliharova, J. Fink-Gremmels, S. Bull, J. Lamka, and L. Skalova, “Benzimidazole Drugs and Modulation of Biotransformation Enzymes,” Research in Veterinary Science 76, no. 2 (2004): 95–108.
  • N. Shrivastava, M. J. Naim, M. J. Alam, F. Nawaz, S. Ahmed, and O. Alam, “Benzimidazole Scaffold as Anticancer Agent: Synthetic Approaches and Structure–Activity Relationship,” Archiv der Pharmazie - Chemistry in Life Sciences 350, (2017): e1700040.
  • J. Sharma, P. K. Soni, R. Bansal, and A. K. Halve, “Synthetic Approaches towards Benzimidazoles by the Reaction of o-Phenylenediamine with Aldehydes Using a Variety of Catalysts: A Review,” Current Organic Chemistry 22, no. 23 (2018): 2280– 99.
  • P. Saha, T. Ramana, N. Purkait, Md A. Ali, R. Paul, and T. Punniyamurthy, “Ligand-Free Copper-Catalyzed Synthesis of Substituted Benzimidazoles, 2-Aminobenzimidazoles, 2-Aminobenzothiazoles, and Benzoxazoles,” The Journal of Organic Chemistry 74, no. 22 (2009): 8719–25.
  • D. Mahesh, P. Sadhu, and T. Punniyamurthy, “Copper(I)-Catalyzed Regioselective Amination of N-Aryl Imines Using TMSN3 and TBHP: A Route to Substituted Benzimidazoles,” The Journal of Organic Chemistry 80, no. 3 (2015): 1644–50.
  • J. P. Wan, S. F. Gan, J. M. Wu, and Y. Pan, “Water Mediated Chemoselective Synthesis of 1,2-Disubstituted Benzimidazoles Using o-Phenylenediamine and the Extended Synthesis of Quinoxalines,” Green Chemistry 11, no. 10 (2009): 1633–7.
  • S. Santra, A. Majee, and A. Hajra, “Nano Indium Oxide: An Efficient Catalyst for the Synthesis of 1, 2-Disubstituted Benzimidazoles in Aqueous Media,” Tetrahedron Letters 53, no. 15 (2012): 1974–7.
  • A. Maleki, N. Ghamari, and M. Kamalzare, “Chitosan-Supported Fe3O4 Nanoparticles: A Magnetically Recyclable Heterogeneous Nanocatalyst for the Syntheses of Multifunctional Benzimidazoles and Benzodiazepines,” RSC Advances 4, no. 19 (2014): 9416–23.
  • N. Thimmaraju, S. Z. M. Shamshuddin, S. R. Pratap, K. Raja, M. Shyamsundar, and T. E. Mohankumar, “Simple but Efficient Synthesis of Novel Substituted Benzimidazoles over ZrO2-Al2O3,” Synthetic Communications 46, no. 18 (2016): 1537–59.
  • K. Bahrami, M. M. Khodaei, and A. Nejati, “Synthesis of 1,2-Disubstituted Benzimidazoles, 2-Substituted Benzimidazoles and 2-Substituted Benzothiazoles in SDS Micelles,” Green Chemistry 12, no. 7 (2010): 1237–41.
  • M. Shen, and T. G. Driver, “Iron(II) Bromide-Catalyzed Synthesis of Benzimidazoles from Aryl Azides,” Organic Letters 10, no. 15 (2008): 3367–70.
  • D. Gandhi, and S. Agarwal, “Urea Nitrate Catalyzed Synthesis of 2-Arylbenzothiazoles Using the Grindstone Technique,” Heterocyclic Communications 24, no. 6 (2018): 307–10.
  • J. K. R. Gasser, and A. Penny, “The Value of Urea Nitrate and Urea Phosphate as Nitrogen Fertilizers for Grass and Barley,” The Journal of Agricultural Science 69, no. 1 (1967): 139–48.
  • J. Almog, A. Klein, A. Sokol, Y. Sasson, D. Sonenfeld, and T. Tamiri, “Urea Nitrate and Nitrourea: Powerful and Regioselective Aromatic Nitration Agents,” Tetrahedron Letters 47, no. 49 (2006): 8651–2.
  • M. Anniyappan, R. Nagarajan, and P. T. Perumal, “Urea Nitrate Catalyzed Imino Diels-Alder Reactions: Synthesis of Cyclopentaquinolines, Pyranoquinolines, and Furoquinoline Derivatives,” Synthetic Communications 32, no. 1 (2002): 99–103.
  • M. Anniyappan, D. Muralidharan, and P. T. Perumal, “A Novel Application of the Oxidizing Properties of Urea Nitrate and Peroxydisulfate-Cobalt(II):Aromatization of NaD(P)H Model Hantzsch 1,4-Dihydropyridines,” Tetrahedron 58, no. 25 (2002): 5069–73.
  • P. Kumar, R. Bhatia, R. Khanna, A. Dalal, D. Kumar, P. Surain, and R. C. Kamboj, “Synthesis of Some Benzothiazoles by Developing a New Protocol Using Urea Nitrate as a Catalyst and Their Antimicrobial Activities,” Journal of Sulfur Chemistry (2017): 1–12.
  • M. Lei, L. Ma, and L. Hu, “One-Pot Synthesis of 1 h-Benzimidazole Derivatives Using Thiamine Hydrochloride as a Reusable Organocatalyst,” Synthetic Communications 42, no. 20 (2012): 2981–93.
  • Z. Y. Yu, J. Zhou, Q. S. Fang, L. Chen, and Z. B. Song, “Chemoselective Synthesis of 1,2-Disubstituted Benzimidazoles in Lactic Acid without Additive,” Chemical Papers 70, (2016): 1293–8.
  • Z. K. Jaberi, and M. Amiri, “An Efficient and Inexpensive Synthesis of 2-Substituted Benzimidazoles in Water Using Boric Acid at Room Temperature,” E-Journal of Chemistry 9, no. 1 (2012): 167–70.
  • R. S. Mekala, S. K. Balam, J. P. S. Harinath, R. R. Gajjal, and S. R. Cirandur, “Polyethylene Glycol (PEG-400): An Efficient Medium for the Synthesis of 1,2-Disubstituted Benzimidazoles,” Cogent Chemistry 1, (2015): 1049932.
  • A. Pramanik, R. Roy, S. Khan, A. Ghatak, and S. Bhar, “Eco-Friendly Synthesis of 2-Aryl-1-Arylmethyl-1H-Benzimidazoles Using Alumina-Sulfuric Acid as a Heterogeneous Reusable Catalyst,” Tetrahedron Letters 55, no. 10 (2014): 1771–7.
  • C. Karami, K. Ghodrati, M. Izadi, A. Farrokh, S. Jafari, M. Mahmoudiyani, and N. Haghnazari, “A Fast Procedure for the Preparation of Benzimidazole Derivatives Using Polymer-Supported with Trifluoromethanesulfonic Acid as Novel and Reusable Catalyst,” Journal of the Chilean Chemical Society 58, no. 3 (2013): 1914–7.
  • D. Azarifar, M. Pirhayati, B. Maleki, M. Sanginabadi, and R. N. Yami, “Acetic Acid-Promoted Condensation of o-Phenylenediamine Withaldehydes into 2-Aryl-1-(Arylmethyl)-1H-Benzimidazolesunder Microwave Irradiation,” Journal of the Serbian Chemical Society 75, no. 9 (2010): 1181–9.
  • U. P. Tarpada, B. B. Thummar, and D. K. Raval, “Polymer Supported Sulphanilic Acid – A Novel Green Heterogeneous Catalyst for Synthesis of Benzimidazole Derivatives,” Journal of Saudi Chemical Society 20, no. 5 (2016): 530–5.
  • N. V. Shitole, K. S. Niralwad, B. B. Shingate, and M. S. Shingare, “Synthesis of 2-Aryl-1-Arylmethyl-1H-Benzimidazoles Using Chlorosulfonic Acid at Room Temperature,” Arab Journal of Chemistry 9, (2016): S858–S860.
  • H. Sharghi, O. Asemani, and S. M. H. Tabaei, “Simple and Mild Procedures for Synthesis of Benzimidazole Derivatives Using Heterogeneous Catalyst Systems,” Journal of Heterocyclic Chemistry 45, no. 5 (2008): 1293–8.
  • M. Banerjee, A. Chatterjee, V. Kumar, Z. T. Bhutia, D. G. Khandare, M. S. Majik, and B. G. Roy, “A Simple and Efficient Mechanochemical Route for the Synthesis of 2-Aryl Benzothiazoles and Substituted Benzimidazoles,” RSC Advances 4, no. 74 (2014): 39606–11.
  • S. Majumdar, M. Chakraborty, N. Pramanik, and D. K. Maiti, “Grindstone Chemistry: Protic Ionic Liquid-Substrate Tuned Green Synthesis of 1,2-Disubstituted and 2-Substituted Benzimidazoles with Outstanding Selectivity,” RSC Advances 5, no. 63 (2015): 51012–8.
  • H. Sharma, N. Kaur, N. Singh, and D. O. Jang, “Synergetic Catalytic Effect of Ionic Liquids and ZnO Nanoparticles on the Selective Synthesis of 1,2-Disubstituted Benzimidazoles Using a Ball-Milling Technique,” Green Chemistry 17, no. 8 (2015): 4263–70.
  • X. Qian, A. McDonald, H. J. Zhou, N. D. Adams, C. A. Parrish, K. J. Duffy, D. M. Fitch, R. Tedesco, L. W. Ashcraft, B. Yao, H. Jiang, et al. “Discovery of the First Potent and Selective Inhibitor of Centromere-Associated Protein E: GSK923295 X,” ACS Medicinal Chemistry Letters 1, no. 1 (2010): 30–4.,
  • P. Picconi, C. Hind, S. Jamshidi, K. Nahar, M. Clifford, M. E. Wand, J. M. Sutton, and K. M. Rahman, “Triaryl Benzimidazoles as a New Class of Antibacterial Agents against Resistant Pathogenic Microorganisms,” Journal of Medicinal Chemistry 60, no. 14 (2017): 6045–59.
  • “Way 2 Drug - PASS online,” http://www.pharmaexpert.ru/passonline/index.php (accessed November 11, 2019).
  • G. V. Kokurkina, M. D. Dutov, S. A. Shevelev, S. V. Popkov, A. V. Zakharov, and V. V. Poroikov, “Synthesis, Antifungal Activity and QSAR Study of 2-Arylhydroxynitroindoles,” European Journal of Medicinal Chemistry 46, no. 9 (2011): 4374–82.
  • P. Eleftheriou, A. Geronikaki, D. Hadjipavlou-Litina, P. Vicini, O. Filz, D. Filimonov, V. Poroikov, S. S. Chaudhaery, K. K. Roy, and A. Saxena, “Fragment-Based Design, Docking, Synthesis, Biological Evaluation and Structure-Activity Relationships of 2-Benzo/Benzisothiazolimino-5-Aryliden-4-Thiazolidinones as Cycloxygenase/Lipoxygenase Inhibitors,” European Journal of Medicinal Chemistry 47, no. 1 (2012): 111–24.
  • M. B. M. Reddy, A. Nizam, and M. A. Pasha, “Zn(OAc)2.2H2O-Catalyzed, Simple, and Clean Procedure for the Synthesis of 2-Substituted Benzoxazoles Using a Grindstone Method,” Synthetic Communications 41, no. 12 (2011): 1838–42.
  • G. Thirupathi, M. Venkatanarayana, P. K. Dubey, and Y. B. Kumari, “L-Tyrosine as an Eco-Friendly and Efficient Catalyst for Knoevenagel Condensation of Arylaldehydes with Meldrum’s Acid in Solvent-Free Condition under Grindstone Method,” Organic Chemistry International 2012, (2012): 1–4.
  • A. Lapkin, and D. J. C. Constable, “Green Chemistry Metrics,” in Measuring and Monitoring Sustainable Processes (Boca Raton, FL: Wiley, 2008).
  • K. V. Aken, L. Strekowski, and L. Patiny, “EcoScale, a Semi-Quantitative Tool to Select an Organic Preparation Based on Economical and Ecological Parameters,” Beilstein Journal of Organic Chemistry 2, no. 1 (2006): 3–8.
  • M. Rarey, B. Kramer, T. Lengauer, and G. Klebe, “A Fast Flexible Docking Method Using an Incremental Construction Algorithm,” Journal of Molecular Biology 261, no. 3 (1996): 470–89.
  • B. Kramer, M. Rarey, and T. Lengauer, “CASP2 Experiences with Docking Flexible Ligands Using FlexX,” Proteins: Structure, Function, and Genetics 29, no. S1 (1997): 221–5.
  • “LeadIt” version 2.1.8, BioSolveIT GmbH Sankt, Augustin, Germany.
  • H. J. Böhm, “The Development of a Simple Empirical Scoring Function to Estimate the Binding Constant for a Protein-Ligand Complex of Known Three-Dimensional Structure,” Journal of Computer-Aided Molecular Design 8, (1994): 243–56.
  • “SYBYL,” TRIPOS Associates Inc., St. Louis, MO. http://www.tripos.com/ (1994).
  • “Accelrys Discovery Studio version 4.0,” Accelrys, San Diego, CA, www.accelrys.com/products/collaborativescience/biovia-discovery-studio/.
  • B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus, “CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations,” Journal of Computational Chemistry 4, no. 2 (1983): 187–217.
  • I. Garcia-Saez, T. Yen, R. H. Wade, and F. Kozielski, “Crystal Structure of the Motor Domain of the Human Kinetochore Protein CENP-E,” Journal of Molecular Biology 340, no. 5 (2004): 1107–16.
  • S. Bietz, S. Urbaczek, B. Schulz, and M. Rarey, “Protoss: A Holistic Approach to Predict Tautomers and Protonation States in Protein-Ligand Complexes,” Journal of Cheminformatics 6, (2014): 1–12.
  • K. Stierand, and M. Rarey, “Drawing the PDB: Protein-Ligand Complexes in Two Dimensions,” ACS Medicinal Chemistry Letters 1, no. 9 (2010): 540–5.
  • A. I. Vogel, A Textbook of Practical Organic Chemistry (London, UK: Longmans, 1971), 442.
  • B. D. Bax, P. F. Chan, D. S. Eggleston, A. Fosberry, D. R. Gentry, F. Gorrec, I. Giordano, M. M. Hann, A. Hennessy, M. Hibbs, et al. “Type IIA Topoisomerase Inhibition by a New Class of Antibacterial Agents,” Nature 466, no. 7309 (2010): 935–40.,

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.