140
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Quantum Chemical Computations, Molecular Docking, Experimental and DFT Calculation of 4-Amino-3-Phenylbutanoic Acid

, &
Pages 1302-1321 | Received 19 Nov 2019, Accepted 27 May 2020, Published online: 30 Jun 2020

Reference

  • A. F. Collins, H. A. Pearson, P. Giardina, K. T. McDonagh, S. W. Brusilow, and G. J. Dover, “Oral Sodium Phenylbutyrate Therapy in Homozygous Beta Thalassemia: A Clinical Trial,” Blood 85, no. 1 (1995): 43–9.
  • M. A. Carducci, J. Gilbert, M. K. Bowling, D. Noe, M. A. Eisenberger, V. Sinibaldi, Y. Zabelina, T. L. Chen, L. B. Grochow, and R. C. Donehower, “A Phase I Clinical and Pharmacological Evaluation of Sodium Phenylbutyrate on an 120-h Infusion Schedule,” Clinical Cancer Research 7 no. 10 (2001): 3047–55.
  • U. Ozcan, E. Yilmaz, L. Ozcan, M. Furuhashi, E. Vaillancourt, R. O. Smith, C. Z. Gorgun, and G. S. Hotamisligil, “Chemical Chaperones Reduce ER Stress and Restore Glucose Homeostasis in a Mouse Model of Type 2 Diabetes,” Science (New York, N.Y.) 313, no. 5790 (2006): 1137–40.
  • K. Tevten, O. L. Holla, T. Ranheim, K. E. Berge, T. P. Leren, and M. A. Kulseth, “4‐Phenylbutyrate restores the functionality of a misfolded mutant low‐density lipoprotein receptor,” The FEBS Journal 274 no. 8 (2007): 1881–93.
  • Gaussian Inc., Gaussian 09 Program (Wallingford, CT: Gaussian Inc., 2009).
  • H. B. Schlegel, “Optimization of Equilibrium Geometries and Transition Structures,” Journal of Computational Chemistry 3, no. 2 (1982): 214–8.
  • P. Hohenberg, and W. Kohn, “Inhomogeneous Electron Gas,” Physical Review 136, no. 3B (1964): B864–71.
  • A. D. Becke, “A New Mixing of Hartree–Fock and Local Density‐Functional Theories,” Journal of Chemical Physics 98, no. 2 (1993): 1372–7.
  • C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Review. B, Condensed Matter 37, no. 2 (1988): 785–9.
  • J. A. Pople, A. P. Scott, M. W. Wong, and L. Radom, “Scaling Factors for Obtaining Fundamental Vibrational Frequencies and Zero-Point Energies from HF/6-31G* and MP2/6-31G* Harmonic Frequencies,” Israel Journal of Chemistry 33, no. 3 (1993): 345–50.
  • J. Fulara, M. J. Nowak, L. Lapinski, A. Leś, and L. Adamowicz, “Theoretical and Matrix-Isolation Experimental Study of the Infrared Spectra of 5-Azauracil and 6-Azauracil,” Spectrochimica Acta Part A: Molecular Spectroscopy 47, no. 5 (1991): 595–613.
  • M. H. Jamroz, Vibrational Energy Distribution Analysis, VEDA 4 Program, Warsaw, 2004.
  • N. M. O’boyle, A. L. Tenderholt, and K. M. Langner, “cclib: A library for package‐independent computational chemistry algorithms,” Journal of Computational Chemistry 29, (2008): 839–45.
  • M. F. Sanner, “Python: A Programming Language for Software Integration and Development,” Journal of Molecular Graphics & Modelling 17, no. 1 (1999): 57–61.
  • G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, and A. J. Olson, “Automated Docking Using a Lamarckian Genetic Algorithm and Empirical Binding Free Energy Function,” Journal of Computational Chemistry 19, no. 14 (1998): 1639–62.
  • A. E. Frisch, H. P. Hratchian, R. D. Dennington II, GaussView Version 5.0.8 (Wallingford, CT: Gaussian, Inc., 2009).
  • M. Suzuki, and K. Kozima, “Microwave Spectrum, Barrier to Internal Rotation, and Dipole Moment of trans-Crotonaldehyde,” Bulletin of the Chemical Society of Japan 42, no. 8 (1969): 2183–6.
  • P. M. Boll, J. Hansen, O. Simonsen, and N. Thorup, “Synthesis and Molecular Structure of Piplartine (=Piperlongumine),” Tetrahedron 40, no. 1 (1984): 171–5.
  • R. Dennington II, T. Keith, J. Millam, Gaussview, Version 4.1.2 (Shawnee Mission, KS: Semichem, Inc., 2007).
  • M. Silverstein, G. C. Basseler, C. Morill, Spectrometric Identification of Organic Compounds (New York, NY: Wiley, 1981).
  • D. Sajan, I. Hubert Joe, V. S. Jayakumar, and J. Zaleski, “Structural and Electronic Contributions to Hyperpolarizability in Methyl p-Hydroxy Benzoate,” Journal of Molecular Structure 785, no. 1–3 (2006): 43–53.
  • D. Lin-Vien, N. B. Colthup, W. G. Fateley, J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Boston, MA: Academic Press, 1991).
  • L. J. Bellamy, The Infrared Spectra of Complex Molecules, vol. 2 (London, UK: Chapman and Hall, 1980).
  • A. Eriksson, J. Lindgren, and K. Stojanoski, “Infrared Spectrum of -Bis(DL-α-Alaninato) Copper(II) Monohydrate – Stretching and Bending Vibrations of the Water Molecule and the Amino Group,” Journal of Molecular Structure 143, (1986): 167–70.
  • G. Varsanyi, Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives vols. 1–2 (London, UK: Adam Hilger, 1974).
  • H. Speeding, and D. H. Wiffen, “Intensities in the infra-red spectrum of benzene,” Proceedings of the Royal Society 238 (1956): 245.
  • A. E. Ozel, S. Celik, and S. Akyuz, “Vibrational Spectroscopic Investigation of Free and Coordinated 5-Aminoquinoline: The IR, Raman and DFT Studies,” Journal of Molecular Structure 924–926 (2009): 523–30.
  • V. Arjunan, I. Saravanan, P. Ravindran, and S. Mohan, “Ab Initio, Density Functional Theory and Structural Studies of 4-Amino-2-Methylquinoline,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 74, no. 2 (2009): 375–84.
  • V. Krishnakumar, and V. N. Prabavathi, “Simulation of IR and Raman Spectral Based on Scaled DFT Force Fields: A Case Study of 2-Amino 4-Hydroxy 6-Trifluoromethylpyrimidine, with Emphasis on Band Assignment,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 71, no. 2 (2008): 449–57.
  • A. Altun, K. Golcuk, and M. Kumru, “Structure and Vibrational Spectra of p-Methylaniline: Hartree-Fock, MP2 and Density Functional Theory Studies,” Journal of Molecular Structure 637, no. 1–3 (2003): 155–69.
  • G. Socrates, Infrared Characteristic Group Frequencies (New York, NY: Wiley, 1980).
  • K. Furic, V. Mohack, and M. Bonifacic, “Raman spectroscopic study of H2O and D2O water solutions of glycine,” Journal of Molecular Structure 267 (1992): 39–44.
  • K. B. Wiberg, and A. Sharke, “A vibrational study of cyclohexane and some of its isotopic derivatives-III. A vibrational analysis of cyclohexane, cyclohexane-d12, cyclohexane-1,1,4,4-d4 and cyclohexane-1,1,2,2,4,4,5,5-d8,” Spectrochimica Acta 29A (1973): 583–94.
  • N. P. G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structure (New York, NY: Wiley, 1999).
  • A. P. Scott, and L. Radom, “Harmonic Vibrational Frequencies: An Evaluation of Hartree − Fock, Møller − Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors,” The Journal of Physical Chemistry 100, no. 41 (1996): 16502–13.
  • Y. S. Mary, H. T. Varghes, C. Y. Panichker, T. Ertan, I. Yildiz, and O. Temiz-Arpaci, “Vibrational spectroscopic studies and ab initio calculations of 5-nitro-2-(p-fluorophenyl) Benzoxazole,” Spectrochimica Acta A 71A (2008): 566–71.
  • K. R. Ambujakshan, V. S. Madhavan, H. T. Varghese, C. Y. Panicker, O. Temiz-Arpaci, B. Tekiner-Gulbas, and I. Yildiz, “Vibrational Spectroscopic Studies and ab Initio Calculations of 5-Methyl-2-(p-Methylaminophenyl)Benzoxazole,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 69, no. 3 (2008): 782–8.
  • T. Sundius, “Scaling of ab Initio Force Fields by MOLVIB,” Vibrational Spectroscopy. 29, no. 1–2 (2002): 89–95.
  • K. Fukui, “Role of Frontier Orbitals in Chemical Reactions,” Science (New York, N.Y.) 218, no. 4574 (1982): 747–54.
  • S. Gunasekaran, R. A. Balaji, S. Kumaresan, G. Anand, and S. Srinivasan, “Experimental and theoretical investigations of spectroscopic properties of N-acetyl-5-Methoxytryptamine,” Canadian Journal of Analytical Sciences and Spectroscopy 53, (2008): 149–62.
  • K. Fukui, T. Yonezawa, and H. Shingu, “A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons,” Journal of Chemical Physics 20, no. 4 (1952): 722–5.
  • C. H. Choi, and M. Kertesz, “Conformational Information from Vibrational Spectra of Styrene, trans-Stilbene, and cis-Stilbene,” The Journal of Physical Chemistry A 101, no. 20 (1997): 3823–31.
  • A. Esme, and S. G. Sagdinc, “The Vibrational Studies and Theoretical Investigation of Structure, Electronic and Non-Linear Optical Properties of Sudan III [1-{[4-(Phenylazo) Phenyl]Azo}-2-Naphthalenol],” Journal of Molecular Structure 1048, (2013): 185–95.
  • C. Charanya, S. Sampathkrishnan, and N. Balamurugan, “Quantum Mechanical Analysis, Spectroscopic (FT-IR, FT-Raman, UV-Visible) Study, and HOMO-LUMO Analysis of (1 S,2 R )-2-Amino-1-Phenylpropan-1-ol Using Density Functional Theory,” Journal of Molecular Liquids 231, (2017): 116–25.
  • R. Hoffmann, Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures (New York, NY: VCH Publishers, 1988).
  • T. Hughbanks, and R. Hoffmann, “Chains of Trans-Edge-Sharing Molybdenum Octahedra: metal-Metal Bonding in Extended Systems,” Journal of the American Chemical Society 105, no. 11 (1983): 3528–37.
  • M. Chen, U. V. Waghmare, C. M. Friend, and E. Kaxiras, “A density functional study of clean and hydrogen-covered α-MoO3(010): Electronic structure and surface relaxation,”Journal of Chemical Physics 109, (1998): 6680–854.
  • P.N. Prasad, D.J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (New York, NY: Wiley, 1991).
  • G. A. Lindsay, K. D. Singer (Eds.), Polymers for Second-Order Nonlinear Optics. ACS Symposium Series, No. 601 (Washington, DC: ACS, 1995).
  • D. M. Burland, “Optical Nonlinearities in Chemistry: Introduction,” Chemical Reviews 94, no. 1 (1994): 1–2.
  • E. Hanamura, “Very Large Optical Nonlinearity of Semiconductor Microcrystallites,” Physical Review. B, Condensed Matter 37, no. 3 (1988): 1273–9. vol
  • P. Politzer, and J. S. Murray, “The Fundamental Nature and Role of the Electrostatic Potential in Atoms and Molecules,” Theoretical Chemistry Accounts 108, no. 3 (2002): 134–42.
  • R. G. Pearson, Chemical Hardness (Weinheim, Germany; New York, NY: John Wiley-VCH, 1997).
  • R. G. Parr, V. Laszlo, and S. Liu, “Electrophilicity Index,” Journal of the American Chemical Society 121 (1999): 922–1924.
  • C. Charanya, S. Sampathkrishnan, and N. Balamurugan, “Quantum Chemical Computations, Molecular Docking, Vibrational Spectroscopic Analysis, Non-Linear Optical Properties and DFT Calculation of 2- [(2,3-Dimethylphenyl)Amino] Benzoic Acid,” Polycyclic Aromatic Compounds (2019): 1–23.
  • A. Lagunin, A. Stepanchikova, D. Filimonov, and V. Poroikov, “PASS: Prediction of Activity Spectra for Biologically Active Substances,” Bioinformatics 16, no. 8 (2000): 747–8.
  • PASS. http://pass.ibmh.msk.su/ (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.