148
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

One-Pot Synthesis of Quinolinyl Amino Nitriles and Their Antidiabetic, Anti-inflammatory, Antioxidant, and Molecular Docking Studies

ORCID Icon, , & ORCID Icon
Pages 1581-1595 | Received 21 Dec 2019, Accepted 01 Jul 2020, Published online: 15 Jul 2020

References

  • F. Bakr Abdel-Wahab and Rizk E. Khidre, “2-Chloroquinoline-3-Carbaldehyde II: Synthesis, Reactions, and Applications,” Journal of Chemistry 2013, (2013): 1–13.
  • Shraddha M. Prajapati, Kinjal D. Patel, Rajesh H. Vekariya, Shyamali N. Panchal, and Hitesh D. Patel, “Recent Advances in the Synthesis of Quinolines: A Review,” RSC Advances 4, no. 47 (2014): 24463–76.
  • Magnus Rueping, Thomas Theissmann, Mirjam Stoeckel, and Andrey P. Antonchick, “Direct Enantioselective Access to 4-Substituted Tetrahydroquinolines by Catalytic Asymmetric Transfer Hydrogenation of Quinolines,” Organic & Biomolecular Chemistry 9, no. 19 (2011): 6844–50.
  • Saida Benzerka, Abdelmalek Bouraiou, Sofiane Bouacida, Thierry Roisnel, Chafia Bentchouala, Farida Smati, Bertrand Carboni, and Ali Belfaitah, “Synthesis of New 3-Heteroaryl-2-Phenylquinolines and Their Pharmacological Activity as Antimicrobial Agents,” Letters in Organic Chemistry 10, no. 2 (2013): 94–6.
  • A. G. Montalban, Heterocycles in Natural Product Synthesis, edited by K. C. Majumdar and S. K. Chattopadhyay. (New York: Wiley-VCH, 2011), 299–339.
  • Xiang-Jing Wang, Dian-Liang Gong, Ji-Dong Wang, Ji Zhang, Chong-Xi Liu, and Wen-Sheng Xiang, “A New Quinoline Derivative with Cytotoxic Activity from Streptomyces sp. neau50,” Bioorganic & Medicinal Chemistry Letters 21, no. 8 (2011): 2313–5.
  • Joseph P. Michael, “Quinoline, Quinazoline and Acridone Alkaloids,” Natural Product Reports 24, no. 1 (2007): 223–46.
  • A. Kumar, S. B. Katiyar, A. Agarwal, and P. M. S. Chauhan, “Perspective in Antimalarial Chemotherapy,” Current Medicinal Chemistry 10, no. 13 (2003): 1137–50.
  • Ramon Alajarin and Carolina Burgos, Six Membered Heterocycles: Quinoline and Isoquinoline, (New York, NY: Wiley-VCH, 2011), 1527–629.
  • Silvia Anthoine Dietrich, Renate Lindauer, Claire Stierlin, Jürg Gertsch, Ruth Matesanz, Sara Notararigo, José Fernando Díaz, and Karl-Heinz Altmann, “Epothilone Analogues with Benzimidazole and Quinoline Side Chains: Chemical Synthesis, Antiproliferative Activity, and Interactions with Tubulin,” Chemistry (Weinheim an Der Bergstrasse, Germany) 15, no. 39 (2009): 10144–557.
  • R. M. Rodríguez Sarmiento, M. H. Nettekoven, S. Taylor, J. M. Plancher, H. Richter, and O. Roche, “Selective Naphthalene H(3) Receptor Inverse Agonists with Reduced Potential to Induce Phospholipidosis and Their Quinoline Analogs,” Bioorganic & Medicinal Chemistry Letters 19, no. 15 (2009): 4495–500.
  • L. Wei, Z. W. Zhang, and S. X. Wang, “Synthesis and Analysis of Potential DNA Intercalators Containing Quinoline–Glucose Hybrids,” Chemical Biology and Drug Design 74, no. 1 (2009): 80–6.
  • Wu Du, “Towards New Anticancer Drugs: A Decade of Advances in Synthesis of Camptothecins and Related Alkaloids,” Tetrahedron 59, no. 44 (2003): 8649–87.
  • Liwang Cui, Sungano Mharakurwa, Daouda Ndiaye, Pradipsinh K. Rathod, and Philip J. Rosenthal, “Antimalarial Drug Resistance: Literature Review and Activities and Findings of the ICEMR Network,” The American Journal of Tropical Medicine and Hygiene 93, no. 3 Suppl (2015): 57–68.
  • Pedro Martins, João Jesus, Sofia Santos, Luis R. Raposo, Catarina Roma-Rodrigues, Pedro Viana Baptista, and Alexandra R. Fernandes, “Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine's Tool Box,” Molecules (Basel, Switzerland) 20, no. 9 (2015): 16852–91.
  • D. T. Chu, P. B. Fernandes, and A. G. Pernet, “Synthesis and Biological Activity of Benzothiazolo[3,2-a]Quinolone Antibacterial Agents,” Journal of Medicinal Chemistry 29, no. 8 (1986): 1531–4.
  • F. O'Donnell, T. J. P. Smyth, V. N. Ramachandran, and W. F. Smyth, “A Study of the Antimicrobial Activity of Selected Synthetic and Naturally Occurring Quinolines,” International Journal of Antimicrobial Agents 35, no. 1 (2010): 30–8.
  • C. Praveen, P. DheenKumar, D. Muralidharan, and P. T. Perumal, “Synthesis, Antimicrobial and Antioxidant Evaluation of Quinolines and Bis(indolyl)methanes,” Bioorganic & Medicinal Chemistry Letters 20, no. 24 (2010): 7292–6.
  • Obaid Afzal, Suresh Kumar, Md Rafi Haider, Md Rahmat Ali, Rajiv Kumar, Manu Jaggi, and Sandhya Bawa, “A Review on Anticancer Potential of Bioactive Heterocycle Quinoline,”European Journal of Medicinal Chemistry 97, (2015): 871–910.
  • Y.-L. Chen, H.-M. Hung, C.-M. Lu, K.-C. Li, and C.-C. Tzeng, “Synthesis and Anticancer Evaluation of Certain Indolo [2, 3-b] Quinoline Derivatives,” Bioorganic & Medicinal Chemistry 12, no. 24 (2004): 6539–46.
  • Fraser F. Fleming, Lihua Yao, P. C. Ravikumar, Lee Funk, and Brian C. Shook, “Nitrile-Containing Pharmaceuticals: Efficacious Roles of the Nitrile Pharmacophore,” Journal of Medicinal Chemistry 53, no. 22 (2010): 7902–17.
  • B. A. Bhanu Prasad, A. Bisai, and V. K. Singh, “Trimethylsilyl Cyanide Addition to Aldimines and Its Application in the Synthesis of (S)-Phenylglycine Methyl Ester,” Tetrahedron Letters 45, no. 52 (2004): 9565–7.
  • K. Shen, X. H. Liu, Y. F. Cai, L. L. Lin, and X. M. Feng, “Facile and Efficient Enantioselective Strecker Reaction of Ketimines by Chiral Sodium Phosphate,” Chemistry (Weinheim an Der Bergstrasse, Germany) 15, no. 24 (2009): 6008–14.
  • Shū Kobayashi and Haruro Ishitani, “Catalytic Enantioselective Addition to Imines,” Chemical Reviews 99, no. 5 (1999): 1069–94.
  • Takashi Ooi, Yukitaka Uematsu, and Keiji Maruoka, “Asymmetric Strecker Reaction of Aldimines Using Aqueous Potassium Cyanide by Phase-Transfer Catalysis of Chiral Quaternary Ammonium Salts with a Tetranaphthyl Backbone,” Journal of the American Chemical Society 128, no. 8 (2006): 2548–9.
  • Petr Vachal and Eric N. Jacobsen, “Structure-Based Analysis and Optimization of a Highly Enantioselective Catalyst for the Strecker Reaction,” Journal of the American Chemical Society 124, no. 34 (2002): 10012–4..
  • Fabio Cruz-Acosta, Alicia Santos-Expósito, Pedro de Armas, and Fernando García-Tellado, “Lewis Base-Catalyzed Three-Component Strecker Reaction on Water. An Efficient Manifold for the Direct α-Cyanoamination of Ketones and Aldehydes,” Chemical Communications 44, no. 34 (2009): 6839–41.
  • Joshua P. Abell and Hisashi Yamamoto, “Dual-Activation Asymmetric Strecker Reaction of Aldimines and Ketimines Catalyzed by a Tethered Bis(8-Quinolinolato) Aluminum Complex,” Journal of the American Chemical Society 131, no. 42 (2009): 15118–9..
  • Surya K. De and Richard A. Gibbs, “Bismuth Trichloride Catalyzed Synthesis of α-Aminonitriles,” Tetrahedron Letters 45, no. 40 (2004): 7407–8.
  • Brindaban C. Ranu, Suvendu S. Dey, and Alakananda Hajra, “Indium Trichloride Catalyzed One-Step Synthesis of α-Amino Nitriles by a Three-Component Condensation of Carbonyl Compounds, Amines and Potassium Cyanide,” Tetrahedron 58, no. 13 (2002): 2529–32.
  • Benjaram M. Reddy, Boningari Thirupathi, and Meghshyam K. Patil, “Highly Efficient Promoted Zirconia Solid Acid Catalysts for Synthesis of α-Aminonitriles Using Trimethylsilyl Cyanide,” Journal of Molecular Catalysis A: Chemical 307, no. 1–2 (2009): 154–9.
  • G. Wang, X. Xie, W. Xu, and Y. Liu, “Nickel-Catalyzed Highly Regioselective Hydrocyanation of Alkenes with Zn(CN)2,” Organic Chemistry Frontiers 6, no. 12 (2019): 2037–42..
  • A. Bahrani and Z. Karimi-Jaberi, “A Green One-Pot Synthesis of α-Amino Nitrile Derivatives via Strecker Reaction in Deep Eutectic Solvents,” Monatshefte Für Chemie - Chemical Monthly 150, no. 2 (2019): 303–7..
  • Y. Takahashi, R. Yoshii, T. Sato, and N. Chida, “Iridium-Catalyzed Reductive Nucleophilic Addition to Secondary Amides,” Organic Letters 20, no. 18 (2018): 5705–8..
  • Y. L. Liu, X. P. Yin, and J. Zhou, “Internally Reuse Waste: Catalytic Asymmetric One-Pot Strecker Reaction of Fluoroalkyl Ketones, Anilines and TMSCN by Sequential Catalysis,” Chinese Journal of Chemistry 36, no. 4 (2018): 321–8..
  • S. Sheik Mansoor, K. Aswin, K. Logaiya, and S. P. N. Sudhan, “An Efficient One-Pot Three-Component Synthesis of α-Amino Nitriles via Strecker Reaction Catalysed by Bismuth(III) Nitrate,” Journal of Saudi Chemical Society 20, (2016): S202–S210..
  • Sakshi Shah and Baldev Singh, “Catalyst-Free, Facile, and an Efficient Synthesis of α-Aminonitriles Employing Zn(CN)2 as an Ecofriendly Cyanating Agent,” Tetrahedron Letters 53, no. 2 (2012): 151–6.
  • Souheila Ladraa, Fabienne Berree, Abdelmalek Bouraiou, Sofiane Bouacida, Thierry Roisnel, Bertrand Carboni, and Ali Belfaitah Roisnel, “Efficient Synthesis and X-Ray Structures of New α-Quinolin-3-yl-α-Aminonitriles and Derivatives,” Tetrahedron Letters 54, no. 8 (2013): 749–52.
  • Richard A. Friesner, B. Robert Murphy, Matthew P. Repasky, Leah L. Frye, Jeremy R. Greenwood, A. Thomas Halgren, Paul C. Sanschagrin, and Daniel T. Mainz, “Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein − Ligand Complexes,” Journal of Medicinal Chemistry 49, no. 21 (2006): 6177–96.
  • Thomas A. Halgren, Robert B. Murphy, Richard A. Friesner, Hege S. Beard, Leah L. Frye, W. Thomas Pollard, and Jay L. Banks, “Glide:  A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database screening,” Journal of Medicinal Chemistry 47, no. 7 (2004): 1750–9..
  • Richard A. Friesner, Jay L. Banks, Robert B. Murphy, Thomas A. Halgren, Jasna J. Klicic, Daniel T. Mainz, Matthew P. Repasky, Eric H. Knoll, Mee Shelley, Jason K. Perry, et al. “Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy,” Journal of Medicinal Chemistry 47, no. 7 (2004): 1739–49.
  • Schrödinger Release 2018-3: QikProp (version 1 Maestro 11.5) (New York, NY: Schrödinger, LLC, 2018).
  • Vinicius C. Soeiro, Karoline R. T. Melo, Monique G. C. F. Alves, Mayara J. C. Medeiros, Maria L. P. M. Grilo, 1 Jailma. Almeida-Lima, Daniel L. Pontes, Leandro S. Costa, and Hugo A. O. Rocha, “Dextran: Influence of Molecular Weight in Antioxidant Properties and Immunomodulatory Potential,” International Journal of Molecular Sciences 17, no. 8 (2016): 1340..
  • M. S. R. Murty, Mohana Rao Katiki, B. Ramalingeswara Rao, Jagadeesh Babu Nanubolu, Sudheer Kumar Buddana, and R. S. Prakasham, “Magnetically Recyclable Nano-Fe2O3-Catalyzed Chemoselective Synthesis and Antioxidant Activity of Diethyl (3-((5-Aryl-1H-1,2,4-Triazol-3-yl)Thio)Propyl)Phosphonates,” Synthetic Communications 44, no. 18 (2014): 2724–37.
  • Shashidhar Bharadwaj, Boja. Poojary, Sharath Kumar M. Nandish, Jayanna Kengaiah, Mugaranja P. Kirana, Madan Kumar Shankar, Anupam J. Das, Ananda Kulal, and Devaraja Sannaningaiah, “Efficient Synthesis and in Silico Studies of the Benzimidazole Hybrid Scaffold with the Quinolinyloxadiazole Skeleton with Potential α-Glucosidase Inhibitory, Anticoagulant, and Antiplatelet Activities for Type-II Diabetes Mellitus Management and Treating Thrombotic Disorders,” ACS Omega 3, no. 10 (2018): 12562–74..
  • Thomas Klabunde, K. Ulrich Wendt, Dieter Kadereit, Volker Brachvogel, Hans-Jörg Burger, Andreas W. Herling, Nikos G. Oikonomakos, Magda N. Kosmopoulou, Dieter Schmoll, Edoardo Sarubbi, et al. “Acyl Ureas as Human Liver Glycogen Phosphorylase Inhibitors for the Treatment of Type 2 Diabetes,” Journal of Medicinal Chemistry 48, no. 20 (2005): 6178–93.
  • Elzbieta Lodyga-Chruscinska, Giovanni Micera, and Eugenio Garribba, “Complex Formation in Aqueous Solution and in the Solid State of the Potent Insulin-Enhancing V(IV)O2+ compounds formed by picolinate and quinolinate derivatives,” Inorganic Chemistry 50, no. 3 (2011): 883–99.
  • Xavier Collin, Armelle Sauleau, and Joel Coulon, “1,2,4 Triazolo Mercapto and Aminonitriles as Potent Antifungal Agents,” Heterocyclic Compounds 34, no. 44 (2003): 2601–5.
  • Z. Orfi, F. Waczek, F. Baska, I. Szabadkai, R. Torka, J. Hartmann, L. Orfi, and A. Ullrich, “Novel Members of Quinoline Compound Family Enhance Insulin Secretion in RIN-5AH Beta Cells and in Rat Pancreatic Islet Microtissue,” Scientific Reports 7, (2017): 44073..
  • S. K. Buddana, Y. Venkata Naga Varanasi, and P. Reddy Shetty, “Fibrinolytic, anti-inflammatory and anti-microbial properties of α-(1-3)-glucans produced from Streptococcus mutans (MTCC 497) ),” Carbohydrate Polymers 115, (2015): 152–9..
  • V. B. Tatipamula, G. S. Vedula, and A. V. S. Sastry, “Chemical and Pharmacological Evaluation of Manglicolous Lichen Roccella Montagnei Bel em. D. D. Awasthi,” Future Journal of Pharmaceutical Sciences 5, no. 1 (2019).
  • P. Bernfeld, “Amylase α and β,” in Methods in Enzymology, edited by S. P. Colowick and N. O. Kaplan (New York, NY: Academic Press, 1955), 149–158.
  • N. Zahratunnisa, B. Elya, and A. Noviani, “Inhibition of Alpha-Glucosidase and Antioxidant Test of Stem Bark Extracts of Garcinia Fruticosa Lauterb,” Pharmacognosy Journal 9, no. 2 (2017): 273–5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.