138
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Topological Peripheral Shapes and Distance-Based Characterization of Fullerenes C20-C720: Existence of Isoperipheral Fullerenes

Pages 1649-1667 | Received 11 Nov 2019, Accepted 07 Jul 2020, Published online: 10 Aug 2020

References

  • H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature 318, no. 6042 (1985): 162–3.
  • H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, “Long Carbon Chain Molecules in Circumstellar Shells,” The Astrophysical Journal 314, (1987): 352–5.
  • S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature 354, no. 6348 (1991): 56–8.
  • K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-Dimensional Gas of Massless Dirac Fermions in Graphene,” Nature 438, no. 7065 (2005): 197–200.
  • K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-Dimensional Atomic Crystals,” Proceedings of the National Academy of Sciences of the United States of America 102, no. 30 (2005): 10451–3.
  • K. Kikuchi, N. Nakahara, T. Wakabayashi, S. Suzuki, H. Shiromaru, Y. Miyake, K. Saito, I. Ikemoto, M. Kainosho, and Y. Achiba, “NMR Characterization of Isomers of C78, C82 and C84 Fullerenes,” Nature 357, no. 6374 (1992): 142–5.
  • F. Diederich, R. L. Whetten, C. Thilgen, R. Ettl, I. T. O. Chao, and M. M. Alvarez, “Fullerene Isomerism: isolation of C2v,-C78 and D3-C78,” Science (New York, N.Y.) 254, no. 5039 (1991): 1768–70.
  • K. S. Simeonov, K. Y. Amsharov, and M. Jansen, “Chlorinated Derivatives of c78-fullerene isomers with unusually short intermolecular halogen-halogen contacts ,” Chemistry (Weinheim an Der Bergstrasse, Germany) 14, no. 31 (2008): 9585–90.
  • K. S. Simeonov, K. Y. Amsharov, E. Krokos, and M. Jansen, “An Epilogue on the C78-Fullerene Family: the Discovery and Characterization of an Elusive Isomer,”Angewandte Chemie (International ed. in English) 47, no. 33 (2008): 6283–5.
  • F. Diederich, R. Ettl, Y. Rubin, R. L. Whetten, R. Beck, M. Alvarez, S. Anz, D. Sensharma, F. Wudl, K. C. Khemani, et al. “The Higher Fullerenes: isolation and Characterization of C76, C84, C90, C94, and C70O, an Oxide of D5h-C70,” Science (New York, N.Y.) 252, no. 5005 (1991): 548–51.,
  • S. I. Troyanov, S. Yang, C. Chen, and E. Kemnitz, “Six IPR Isomers of C90 Fullerene Captured as Chlorides: carbon Cage Connectivities and Chlorination Patterns,” Chemistry (Weinheim an Der Bergstrasse, Germany) 17, no. 38 (2011): 10662–9.
  • R. C. Haddon, G. E. Scuseria, and R. E. Smalley, “C240—the Most Chemically Inert Fullerene?,” Chemical Physics Letters 272, no. 1-2 (1997): 38–42.
  • K. Kikuchi, N. Nakahara, T. Wakabayashi, M. Honda, H. Matsumiya, T. Moriwaki, S. Suzuki, H. Shiromaru, K. Saito, K. Yamauchi, et al. “Isolation and Identification of Fullerene Family: C76, C78, C82, C84, C90 and C96,” Chemical Physics Letters 188, no. 3-4 (1992): 177–80.,
  • B. C. Wang, and Y. N. Chiu, “Geometry and Orbital Symmetry Relationships of Giant and Hyperfullerenes: C240, C540, C960 and C1500,” Synthetic Metals 56, no. 2-3 (1993): 2949–54.
  • B. I. Dunlap, and R. R. Zope, “Efficient Quantum-Chemical Geometry Optimization and the Structure of Large Icosahedral Fullerenes,” Chemical Physics Letters 422, no. 4-6 (2006): 451–4.
  • M. Terrones, G. Terrones, and H. Terrones. “Structure, Chirality, and Formation of Giant Icosahedral Fullerenes and Spherical Graphitic Onions. In Science of Crystal Structures (Cham: Springer, 2015). 101–112
  • J. W. Martin, G. J. McIntosh, R. Arul, R. N. Oosterbeek, M. Kraft, and T. Söhnel, “Giant Fullerene Formation through Thermal Treatment of Fullerene Soot,” Carbon 125, (2017): 132–8.
  • J. R. Dias, “The Formula Periodic Table for Benzenoid Hydrocarbons and the Unifying Theory of a Periodic Table Set,” Polycyclic Aromatic Compounds 4, no. 1-2 (1994): 87–106.
  • J. R. Dias, “Structure and Electronic Characteristics of Coronoid Polycyclic Aromatic Hydrocarbons as Potential Models of Graphite Layers with Hole Defects,” The Journal of Physical Chemistry. A 112, no. 47 (2008): 12281–92.
  • M. Randić, “Aromaticity of Polycyclic Conjugated Hydrocarbons,” Chemical Reviews. 103, (2003): 3449–606.
  • J. R. Dias, “Perimeter Topology of Benzenoid Polycyclic Hydrocarbons,” Journal of Chemical Information and Modeling 45, no. 3 (2005): 562–71.
  • F. H. Kaatz, and A. Bultheel, “Statistical Properties of Carbon Nanostructures,” Journal of Mathematical Chemistry 51, no. 5 (2013): 1211–20.
  • K. Balasubramanian, “Distance Spectra and Distance Polynomials of Fullerenes,” The Journal of Physical Chemistry 99, no. 27 (1995): 10785–96.
  • D. Babić, D. J. Klein, I. Lukovits, S. Nikolić, and N. Trinajstić, “Resistance‐Distance Matrix: A Computational Algorithm and Its Application,” International Journal of Quantum Chemistry 90, no. 1 (2002): 166–76.
  • K. Balasubramanian, “Topological Characterization of Five C78 Fullerene Isomers,” Chemical Physics Letters 206, no. 1-4 (1993): 210–6.
  • K. Balasubramanian, “Laplacians of Fullerenes (C42-C90),” The Journal of Physical Chemistry 99, no. 17 (1995): 6509–18.
  • K. Balasubramanian, “Characteristic Polynomials of Fullerene Cages,” Chemical Physics Letters 198, no. 6 (1992): 577–86.
  • A. T. Balaban, X. Liu, D. J. Klein, D. Babić, T. G. Schmalz, W. A. Seitz, and M. Randíć, “Graph Invariants for Fullerenes,” Journal of Chemical Information and Modeling 35, no. 3 (1995): 396–404.
  • M. Bača, J. Horváthová, M. Mokrišová, and A. Suhányiová, “On Topological Indices of Fullerenes,” Applied Mathematics and Computation 251, (2015): 154–61.
  • Y. Alizadeh, A. Iranmanesh, and S. Mirzaie, “Computing Schultz Polynomial, Schultz Index of C60 Fullerene by Gap Program,” Digest Journal of Nanomaterials and Biostructures 4, (2009): 7–10.
  • M. Ghorbani, “Connective Eccentric Index of Fullerenes,” Journal of Mathematical Nanoscience 1, (2011): 43–50.
  • A. Behmaram, H. Yousefi-Azari, and A. R. Ashrafi, “Wiener Polarity Index of Fullerenes and Hexagonal Systems,” Applied Mathematics Letters 25, no. 10 (2012): 1510–3.
  • P. V. Khadikar, N. V. Deshpande, P. P. Kale, A. Dobrynin, I. Gutman, and G. Domotor, “The Szeged Index and an Analogy with the Wiener Index,” Journal of Chemical Information and Modeling 35, no. 3 (1995): 547–50.
  • H. Yousefi-Azari, M. H. Khalifeh, and A. R. Ashrafi, “Calculating the edge-Wiener and Szeged Indices of Graphs,” The Journal of Computational and Applied Mathematics 235, no. 16 (2011): 4866–70.
  • I. Gutman, and A. A. Dobrynin, “The Szeged Index–A Success Story,”Graph Theory Notes NY 34, (1988): 37–44.
  • G. R. Vakili-Nezhaad, G. A. Mansoori, and A. R. Ashrafi, “Symmetry Property of Fullerenes,” Journal of Computational and Theoretical Nanoscience 4, no. 6 (2007): 1202–5.
  • N. Tratnik, “The Edge–Szeged Index and the PI Index of Benzenoid Systems in Linear Time,” MATCH Communications in Mathematical and in Computer Chemistry 77, (2017): 393–406.
  • N. Tratnik, “Computing Weighted Szeged and PI Indices from Quotient Graphs,” International Journal of Quantum Chemistry 119, no. 21 (2019): e26006. doi: https://doi.org/10.1002/qua.26006
  • T. Došlić, I. Martinjak, R. Škrekovski, S. T. Spužević, and I. Zubac, “Mostar Index,” Journal of Mathematical Chemistry 56, no. 10 (2018): 2995–3013.
  • Tratnik, N. Computing the Mostar index in networks with applications to molecular graphs. (2019): arXiv preprint arXiv:1904.04131.
  • A. Tepeh, “Extremal Bicyclic Graphs with Respect to Mostar Index,” Applied Mathematics and Computation 355, (2019): 319–24.
  • M. Arockiaraj, J. Clement, and N. Tratnik, “Mostar Indices of Carbon Nanostructures and Circumscribed Donut Benzenoid Systems,” International Journal of Quantum Chemistry 119, no. 24 (2019): e26043. doi: https://doi.org/10.1002/qua.26043
  • S. Brezovnik, and N. Tratnik, “N. New Methods for Calculating the Degree Distance and the Gutman Index,” MATCH Communications in Mathematical and in Computer Chemistry 82, (2019): 111–32.
  • R. Carbó-Dorca, A. Gallegos, and A. J. Sánchez, “Notes on Quantitative structure-properties relationships (QSPR) (1): A discussion on a QSPR dimensionality paradox (QSPR DP) and its quantum resolution ,” Journal of Computational Chemistry 30, no. 7 (2009): 1146–59.
  • P. G. Mezey, “Similarity Analysis in Two and Three Dimensions Using Lattice Animals and Ploycubes,” Journal of Mathematical Chemistry 11, no. 1 (1992): 27–45.
  • P. G. Mezey, “Shape Similarity Measures for Molecular Bodies: A Three-Dimensional Topological Approach in Quantitative Shape-Activity Relation,” Journal of Chemical Information and Modeling 32, no. 6 (1992): 650–6.
  • P. V. Khadikar, S. Karmarkar, V. K. Agrawal, J. Singh, A. Shrivastava, I. Lukovits, and M. V. Diudea, “Szeged Index-Applications for Drug Modeling,” Letters in Drug Design & Discovery 2, no. 8 (2005): 606–24.
  • K. Balasubramanian, “The Use of Frame’s Method for the Characteristic Polynomials of Chemical Graphs,” Theoretica Chimica Acta 65, no. 1 (1984): 49–58.
  • K. Balasubramanian, “Computer Generation of the Characteristic Polynomials of Chemical Graphs,” Journal of Computational Chemistry 5, no. 4 (1984): 387–94.
  • K. Balasubramanian, “Computer-Assisted Enumeration of Walks and Self-Returning Walks on Chemical Graphs,” Computers & Chemistry 9, no. 1 (1985): 43–52.
  • M. I. Huilgol, “Distance Degree Regular Graphs and Distance Degree Injective Graphs: An Overview,” Journal of Discrete Mathematics 2014, (2014): 1–12. https://doi.org/http://dx.doi.org/10.1155/2014/358792.
  • L. V. Quintas, and P. J. Slater, “Pairs of Nonisomorphic Graphs Having the Same Path Degree Sequence,” Match 12, (1981): 75–86.
  • K. Balasubramanian, and S. P. Gupta, “Quantum Molecular Dynamics, Topological, Group Theoretical and Graph Theoretical Studies of Protein-Protein Interactions,” Current Topics in Medicinal Chemistry 19, no. 6 (2019): 426–43.
  • U. Srimathi, V. Nagarajan, and R. Chandiramouli, “Interaction of Imuran, Pentasa and Hyoscyamine Drugs and Solvent Effects on Graphdiyne Nanotube as a Drug Delivery system - A DFT Study,” Journal of Molecular Liquids 265, (2018): 199–207.
  • K. Balasubramanian, J. J. Kaufman, W. S. Koski, and A. T. Balaban, “Graph Theoretical Characterization and Computer Generation of Certain Carcinogenic Benzenoid Hydrocarbons and Identification of Bay Regions,” Journal of Computational Chemistry 1, no. 2 (1980): 149–57.
  • D. Majumdar, S. Roszak, K. Balasubramanian, and H. Nitsche, “Theoretical Study of Aqueous Uranyl Carbonate (UO2CO3) and Its Hydrated Complexes: UO2CO3.nH2O (n = 1 - 3),”Chemical Physics Letters 372no. 1-2 (2003): 232–41.
  • Z. Cao, K. Balasubramanian, M. G. Calvert, and H. Nitsche, “Solvation Effects on Isomeric Preferences of Curium(III) Complexes with Multidentate Phosphonopropionic Acid Ligands: CmH2PPA(2+) and CmHPPA(+) Complexes,” Inorganic Chemistry 48, no. 20 (2009): 9700–14.
  • Z. J. Cao, and K. Balasubramanian, “Theoretical Studies of UO22+(H2O)n, NpO22+(H2O)n, and PuO22+(H2O)n Complexes (n = 4-6) in Aqueous Solution and Gas Phase,” Journal of Chemical Physics 123, no. 11 (2005): 12.
  • K. Balasubramanian, “Ten Low-Lying Electronic States of Pd3,” The Journal of Chemical Physics 91, no. 1 (1989): 307–13.
  • K. Balasubramanian, “Relativistic Calculations of Electronic States and Potential-Energy Surfaces of Sn3,” The Journal of Chemical Physics 85, no. 6 (1986): 3401–6.
  • K. Balasubramanian, Relativistic Effects in Chemistry: Part A Theory & Techniques (John Wiley & Sons: New York, 1997), 301.
  • L. Schwaiger, T. Parsons-Moss, L. K. Schwaiger, A. Hubaud, Y. J. Hu, H. Tuysuz, P. Yang, K. Balasubramanian, and H. Nitsche, “Actinide and Lanthanide Complexation by Organically Modified Mesoporous Silica,”Abstracts of Papers of the American Chemical SOCIETY 239, (2010) 98-NUCL, MAR 21 2010, WOS:000208189303645.
  • T. Parsons-Moss, L. K. Schwaiger, A. Hubaud, Y. J. Hu, H. Tuysuz, P. Yang, K. Balasubramanian, and H. Nitsche, “Plutonium Complexation by Phosphonate-Functionalized Mesoporous Silica,” Abstracts of Papers of the American Chemical SOCIETY 241, (2011) 48-NUCL, 241st National Meeting and Exposition of the American-Chemical-Society (ACS), WOS:000291982806306.
  • K. Balasubramanian, “Group Theoretical Analysis of Vibrational Modes and Rovibronic lLevels of Extended Aromatic C48N12 Azafullerene,”Chemical Physics Letters 391, no. 1-3 (2004): 64–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.