236
Views
23
CrossRef citations to date
0
Altmetric
Research Articles

Computation of Degree-Based Topological Descriptors Using M-Polynomial for Coronoid Systems

&
Pages 1770-1793 | Received 08 Jun 2020, Accepted 29 Jul 2020, Published online: 26 Aug 2020

References

  • I. Gutman, and S. J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons (Berlin: Springer-Verlag, 1989).
  • S. J. Cyvin, J. Brunvoll, and B. N. Cyvin, Coronoids and Coronoid-Like Systems (Berlin: Springer-Verlag, 1991).
  • J. R. Dias, “Structure and Electronic Characteristics of Coronoid Polycyclic Aromatic Hydrocarbons as Potential Models of Graphite Layers with Hole Defects,” The Journal of Physical Chemistry. A 112, no. 47 (2008): 12281–92.
  • M. Arockiaraj, J. Clement, and K. Balasubramanian, “Topological Indices and Their Applications to Circumcised Donut Benzenoid Systems, Kekulenes and Drugs,” Polycyclic Aromatic Compounds 40, no. 2 (2020): 280–303.
  • A. T. Balaban, and F. Harary, “Chemical Graphs. V. Enumeration and Proposed Nomenclature of Benzenoid Cata-Condensed Polycyclic Aromatic Hydrocarbons,” Tetrahedron 24, no. 6 (1968): 2505–16.
  • I. Gutman, and O. E. Polansky, Mathematical Concepts in Organic Chemistry (Berlin: Springer-Verlag, 1986).
  • J. R. Dias, “A Periodic Table for Polycyclic Aromatic Hydrocarbons. Isomer Enumeration of Fused Polycyclic Aromatic Hydrocarbons,” Journal of Chemical Information and Modeling 22, no. 1 (1982): 15–22.
  • A. T. Balaban, “Challenging Problems Involving Benzenoid Polycyclic and Related Systems,” Pure and Applied Chemistry 54, no. 5 (1982): 1075–96.
  • H. A. Staab, and F. Diederich, “Cycloarenes, a New Class of Aromatic Compounds, I. Synthesis of Kekulene,” Chemische Berichte 116, no. 10 (1983): 3487–503.
  • H. Miyoshi, S. Nobusue, A. Shimizu, and Y. Tobe, “Non-Alternant Non-Benzenoid Kekulenes: The Birth of a New Kekulene Family,” Chemical Society Reviews 44, no. 18 (2015): 6560–77.
  • D. J. H. Funhoff, and H. A. Staab, “Cyclo[d.e.d.e.e.d.e.d.e.e.]Decakisbenzene, a New Cycloarene,” Angewandte Chemie International Edition in English 25, no. 8 (1986): 742–4.
  • Bharat Kumar, Ruth L. Viboh, Margel C. Bonifacio, William B. Thompson, Jonathan C. Buttrick, Babe C. Westlake, Min-Soo Kim, Robert W. Zoellner, Sergey A. Varganov, Philipp Mörschel, et al. “Septulene: The Heptagonal Homologue of Kekulene,” Angewandte Chemie (International ed. in English) 51, no. 51 (2012): 12795–800.
  • J. I. Aihara, “Magnetic Resonance Energy and Topological Resonance Energy,” Physical Chemistry Chemical Physics : PCCP 18, no. 17 (2016): 11847–57.
  • J. I. Aihara, “Graph Theory of Ring-Current Diamagnetism,” Bulletin of the Chemical Society of Japan 91, no. 2 (2018): 274–303.
  • Uliana Beser, Marcel Kastler, Ali Maghsoumi, Manfred Wagner, Chiara Castiglioni, Matteo Tommasini, Akimitsu Narita, Xinliang Feng, and Klaus Müllen, “A C216-Nanographene Molecule with Defined Cavity as Extended Coronoid,” Journal of the American Chemical Society 138, no. 13 (2016): 4322–5.
  • E. Clar, The Aromatic Sextet (London: Wiley, 1972).
  • J. R. Dias, “Nonplanarity Index for Fused Benzenoid Hydrocarbons,” Polycyclic Aromatic Compounds 34, no. 2 (2014): 161–76.
  • I. Gutman, S. Marković, and S. Jeremić, “A Case of Breakdown of the Kekule-Structure Model,” Polycyclic Aromatic Compounds 30, no. 4 (2010): 240–6.
  • M. Randić, “Aromaticity and Conjugation,” Journal of the American Chemical Society 99, (1977): 444–50.
  • J. I. Aihara, M. Makino, T. Ishida, and J. R. Dias, “Analytical Study of Superaromaticity in Cycloarenes and Related Coronoid Hydrocarbons,”The Journal of Physical Chemistry. A 117, no. 22 (2013): 4688–97.
  • F. Dietz, N. Tyutyulkov, G. Madjarova, and K. Müllen, “Is 2-D Graphite an Ultimate Large Hydrocarbon? II. Structure and Energy Spectra of Polycyclic Aromatic Hydrocarbons with Defects,” The Journal of Physical Chemistry B 104, no. 8 (2000): 1746–61.
  • A. T. Balaban, D. J. Klein, and X. Liu, “Graphitic Cones,” Carbon 32, no. 2 (1994): 357–9.
  • A. Giordana, A. Maranzana, G. Ghigo, M. Causa, and G. Tonachini, “Soot Platelets and PAHs with an Odd Number of Unsaturated Carbon Atoms and pi Electrons: Theoretical Study of Their Spin Properties and Interaction with Ozone,” The Journal of Physical Chemistry. A 112, no. 5 (2008): 973–82.
  • J. R. Dias, “On the Spectacular Structural Isomorphism between CnHs Monoradical and Cn+sHs+3 Diradical Benzenoid Hydrocarbons: From Reactive Intermediates to Vacancy (Hole) Defects in graphite,” The Journal of Physical Chemistry. A 112, no. 14 (2008): 3260–74.
  • G. G. Hall, “Molecules with Holes,” Theoretica Chimica Acta 73, no. 5-6 (1988): 425–35.
  • J. Wu, W. Pisula, and K. Müllen, “Graphenes as Potential Material for Electronics,” Chemical Reviews 107, no. 3 (2007): 718–47.
  • Z. Zeng, X. Huang, Z. Yin, H. Li, Y. Chen, H. Li, Q. Zhang, J. Ma, F. Boey, and H. Zhang, “Fabrication of Graphene Nanomesh by Using an Anodic Aluminum Oxide Membrane as a Template,” Advanced Materials (Deerfield Beach, Fla.) 24, no. 30 (2012): 4138–42.
  • D. Jariwala, A. Srivastava, and P. M. Ajayan, “Graphene Synthesis and Band Gap Opening,” Journal of Nanoscience and Nanotechnology 11, no. 8 (2011): 6621–41.
  • T. Parsons-Moss, S. Jones, J. Wang, Z. Wu, E. Uribe, D. Zhao, and H. Nitsche, “Reduction of Plutonium in Acidic Solutions by Mesoporous Carbons,” Journal of Radioanalytical and Nuclear Chemistry 307, no. 3 (2016): 2593–601.
  • S. Shinkai, H. Koreishi, K. Ueda, T. Arimura, and O. Manabe, “Molecular Design of Calixarene-Based Uranophiles Which Exhibit Remarkably High Stability and Selectivity,” Journal of the American Chemical Society 109, no. 21 (1987): 6371–6.
  • J. A. Shusterman, H. E. Mason, J. Bowers, A. Bruchet, E. C. Uribe, A. B. Kersting, and H. Nitsche, “Development and Testing of Diglycolamide Functionalized Mesoporous Silica for Sorption of Trivalent Actinides and Lanthanides,” ACS Applied Materials & Interfaces 7, no. 37 (2015): 20591–9.
  • J. Cioslowski, “Additive Nodal Increments for Approximate Calculation of the Total π-Electron Energy of Benzenoid Hydrocarbons,” Theoretica Chimica Acta 68, no. 4 (1985): 315–9.
  • S. J. Cyvin, J. Brunvoll, B. N. Cyvin, R. S. Chen, and F. J. Zhang, Generation and Enumeration of Single Coronoid Isomers (Berlin: Springer, 1994).
  • S. J. Cyvin, and I. Gutman, Kekulé Structures in Benzenoid Hydrocarbons (Berlin: Springer, 1988).
  • J. R. Dias, Handbook of Polycyclic Hydrocarbons - Part A - Benzenoid Hydrocarbons (Amsterdam: Elsevier, 1987).
  • X. Ke, “The Number of Normal Components of Essentially Disconnected Coronoid Systems,” Polycyclic Aromatic Compounds 36 (2015): 89–105.
  • D. B. West, An Introduction to Graph Theory (Prentice-Hall: Upper Saddle River, NJ, USA, 1996).
  • I. Gutman, “Degree-based topological indices,” Croatica Chemica Acta 86 (2013): 351–61.
  • H. van de Waterbeemd, R. E. Carter, G. Grassy, H. Kubinyi, Y. C. Martin, M. S. Tute, and P. Willet, “Glossary of terms used in computational drug design (IUPAC Recommendations),” Pure and Applied Chemistry 69 (1997): 1137–52.
  • G. Korinth, T. Wellner, K. H. Schaller, and H. Drexler, “Potential of the Octanol-water partition coefficient (logP) to predict the dermal penetration behaviour of amphiphilic compounds in aqueous solutions,” Toxicology letters215, no. 1 (2012): 49–53.
  • G. Rucker, and C. Rucker, “On topological indices, boiling points and cycloalkanes,” The Journal for Chemical Information and Computer scientists 39 (1999): 788–802.
  • I. García, Y. Fall, and, G. Gómez, “Using topological indices to predict anti-Alzheimer and anti-parasitic GSK-3 inhibitors by multi-target QSAR in silico screening,” Molecules 15 (2010): 5408–22.
  • H. Hosoya, “On some counting polynomials in chemistry,” Discrete Applied Mathematics 19 (1988): 239–57.
  • E. Deutsch, and S. Klavžar, “M-Polynomial and degree-based topological indices,” Iranian Journal of Mathematical Chemistry 6 (2015): 93–102.
  • E. Deutsch, and S. Klavžar, “On the M-polynomial of planar chemical graphs,” Iranian Journal of Mathematical Chemistry 11, no. 2 (2020): 65-71.
  • M. Imran, M. K. Siddiqui, M. Naeem, and M. A. Iqbal, “On topological properties of symmetric chemical structures,” Symmetry 10, no. 5 (2018): 173.
  • J. L. Guirao, M. Imran, M. K. Siddiqui, and S. Akhter, “On Valency-Based Molecular Topological Descriptors of Subdivision Vertex-Edge Join of Three Graphs,”Symmetry 12, no. 6 (2020): 1026.
  • Z. Raza, “The Harmonic and Second Zagreb Indices in Random Polyphenyl and Spiro Chains,”Polycyclic Aromatic Compounds (advance online publication), doi:https://doi.org/10.1080/10406638.2020.1749089.
  • J. B. Liu, Z. Y. Shi, Y. H. Pan, J. Cao, M. Abdel-Aty, and U. Al-Juboori, “Computing the Laplacian Spectrum of Linear Octagonal-Quadrilateral Networks and Its Applications,” Polycyclic Aromatic Compounds (advance online publication), doi:https://doi.org/10.1080/10406638.2020.1748666.
  • M. A. Rashid, S. Ahmad, M. K. Siddiqui, and M. H. Muhammad, “Topological Aspects of Single-Walled Titania Nanotubes,” Polycyclic Aromatic Compounds (advance online publication), doi:https://doi.org/10.1080/10406638.2020.1743330.
  • Z. Shao, A. Jahanbani, and S. M. Sheikholeslami, “Multiplicative Topological Indices of Molecular Structure in Anticancer Drugs,” Polycyclic Aromatic Compounds (advance online publication), doi:https://doi.org/10.1080/10406638.2020.1743329.
  • X. Ma, and H. Bian, “The Normalized Laplacians, Degree-Kirchhoff Index and the Spanning Trees of Cylinder Phenylene Chain,” Polycyclic Aromatic Compounds (advance online publication), doi:https://doi.org/10.1080/10406638.2019.1665553.
  • X. Zhang, A. Rauf, M. Ishtiaq, M. K. Siddiqui, and M. H. Muhammad “On Degree Based Topological Properties of Two Carbon Nanotubes,” Polycyclic Aromatic Compounds (advance online publication), doi:https://doi.org/10.1080/10406638.2020.1753221.
  • X. Lin, X. Guo, and X. Chen, “A General Formula for Computing the Hosoya Polynomial of Capped Armchair Nanotubes,” Polycyclic Aromatic Compounds (advance online publication), doi:https://doi.org/10.1080/10406638.2019.1628783.
  • M. Arockiaraj, S. Klavžar, S. Mushtaq, and K. Balasubramanian, “Topological Characterization of the Full k-Subdivision of a Family of Partial Cubes and Their Applications to α-Types of Novel Graphyne and Graphdiyne Materials,” Polycyclic Aromatic Compounds (advance online publication), doi:https://doi.org/10.1080/10406638.2019.1703766.
  • M. Arockiaraj, J. Clement, N. Tratnik, S. Mushtaq, and K. Balasubramanian, “Weighted Mostar indices as measures of molecular peripheral shapes with applications to graphene, graphyne and graphdiyne nanoribbons,” SAR and QSAR in Environmental Research31, no. 3 (2020): 187–208.
  • M. Arockiaraj, S. Klavžar, J. Clement, S. Mushtaq, and K. Balasubramanian, “Edge Distance‐based Topological Indices of Strength‐weighted Graphs and their Application to Coronoid Systems, Carbon Nanocones and SiO2 Nanostructures,” Molecular Informatics38, no. 11-12 (2019): 1900039.
  • M. Arockiaraj, J. Clement, and N. Tratnik, “Mostar indices of carbon nanostructures and circumscribed donut benzenoid systems,”International Journal of Quantum Chemistry 119, no. 24 (2019): e26043.
  • J. Rada, and S. Bermudo, “Is every graph the extremal value of a vertex-degree-based topological index?,” MATCH Communications in Mathematical and in Computer Chemistry 81 (2019): 315–23.
  • Y. Yao, M. Liu, K. C. Das, and Y. Ye, “Some extremal results for vertex-degree-based invariants,” MATCH Communications in Mathematical and in Computer Chemistry 81 (2019) 325–44.
  • J. Rada, “Vertex-degree based topological indices of graphene,” Polycyclic Aromatic Compounds (advance online publication) doi: https://doi.org/10.1080/10406638.2020.1785897
  • H. Wiener, “Structural determination of paraffin boiling points,” Journal of the American chemical society69, no. 1 (1947): 17–20.
  • M. Randić, “On the characterization of molecular branching,” Journal of the American Chemical Society 97 (1975): 6609–15.
  • B. Bollobás, and, P. Erdös, “Graphs of extremal weights,” Ars Combinatoria 50 (1998): 225–33.
  • L. B. Kier, and L. H. Hall, Molecular Connectivity in Structure-Activity Analysis (Wiley, 1986).
  • G. Caporossi, and P. Hansen, “Variable neighbourhood search for extremal graphs. 6. Analyzing Bounds for the Connectivity Index,” Journal of chemical information and computer sciences43, no. 1 (2003): 1–14.
  • K. C. Das, S. Sun, and I. Gutman, “Normalized Laplacian eigenvalues and Randić energy of graphs,” MATCH Communications in Mathematical and in Computer Chemistry 77 (2017): 45–59.
  • M. Randić, “On the history of the Randić index and emerging hostility toward chemical graph theory,” MATCH Communications in Mathematical and in Computer Chemistry 59 (2008): 5–124.
  • Y. Ma, S. Cao, Y. Shi, I. Gutman, M. Dehmer, and B. Furtula, “From the connectivity index to various Randić -type descriptors,” MATCH Communications in Mathematical and in Computer Chemistry 80 (2018): 85–106.
  • O. Favaron, M. Mahéo, and, J. F. Saclé, “Some eigenvalue properties of graphs (conjectures of Grafitti II),” Discrete Mathematics 111 (1993): 197–220.
  • F. C. G. Manso, H. S. Júnior, R. E. Bruns, A. F. Rubira, and E. C. Muniz, “Development of a new topological index for the prediction of normal boiling point temperatures of hydrocarbons: the Fi index,” Journal of Molecular Liquids 165 (2012): 125–32.
  • D. Vukičević, and B. Furtula, “Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges,” Journal of Mathematical Chemistry 46 (2009): 1369–76.
  • P. Wilczek, “New geometric-arithmetic indices,” MATCH Communications in Mathematical and in Computer Chemistry 79 (2018): 5–54.
  • M. Aouchiche, and V. Ganesan, “Adjusting geometric-arithmetic index to estimate boiling point,” MATCH Communications in Mathematical and in Computer Chemistry 84 (2020): 483–97.
  • V. S. Shegehalli, and R. Kanabur, “Arithmetic-Geometric indices of some class of Graph,” Journal of Computer and Mathematical sciences6, no. 4 (2015): 194–199.
  • B. Zhou, and N. Trinajstić, “On a novel connectivity index,” Journal of Mathematical Chemistry46 (2009): 1252–70.
  • B. Zhou, and N. Trinajstić, “On general sum-connectivity index,” Journal of Mathematical Chemistry 47 (2010): 210–18.
  • B. Lučić, N.Trinajstić, and B.Zhou, “Comparison between the sum-connectivity index and product-connectivity index for benzenoid hydrocarbons,” Chemical Physics Letters 475 (2009): 146–48.
  • O. Ivanciuc, T. Ivanciuc, D. Cabrol-Bass, and A. T. Balaban, “Evaluation in quantitative structure-property relationship models of structural descriptors derived from information-theory operators,” Journal of Chemical Information and Computer Sciences 40 (2000): 631–43
  • S. Fajtlowicz, “On conjectures of Graffiti-II,” Congr. Numer 60 (1987): 187–97.
  • A. Ali, L. Zhong, and I. Gutman, “Harmonic index and its generalizations: Extremal results and bounds,” MATCH Communications in Mathematical and in Computer Chemistry 81 (2019): 249–311.
  • I. Gutman, and N. Trinajstić, “Graph theory and molecular orbitals. Total π- electron energy of alternant hydrocarbons,” Chemical Physics Letters 17 no. 4 (1972): 535–38.
  • M. V. Diudea, eds., QSPR/QSAR Studies by Molecular Descriptors (NOVA, New York, 2001).
  • A. T. Balaban, I. Motoc, O. Mekenyan, and D. Bonchev, Topics in Current Chemistry (Springer, Berlin/Heidelberg, 1983).
  • M. Eliasi, and D. Vukičević, “Comparing the multiplicative Zagreb indices,” MATCH Communications in Mathematical and in Computer Chemistry 69 (2013): 765–73.
  • I. Gutman, B. Ruščić, N. Trinajstić, and C. F. Wilcox, “Graph Theory and Molecular Orbitals. XII. Acyclic Polyenes,” The Journal of Chemical Physics 62 (1975): 3399–405.
  • B. Furtula, A. Graovac, and, D. VukiJournal of Mathematical Chemistry ević, “Augmented Zagreb index,” 48 (2010): 370–80.
  • E. Estrada, L. Torres, L. Rodríguez, and I. Gutman, “An atom-bond connectivity index: Modeling the enthalpy of formation of alkanes,” Indian Journal of Chemistry -Section A 37A (1998): 849–55.
  • A. Miličević,S.Nikolić,and,N. Trinajstić, “On reformulated Zagreb indices,” Molecular Diversity 8 (2004): 393–99.
  • D. Vukičević, and, M. Gašperov, “Bond addictive modeling 1. Adriatic indices,” Croatica Chemica Acta 83 (2010): 243–60.
  • Milano chemometrics and QSAR research group, molecular descriptors dataset, http://www.moleculardescriptors.eu/dataset/dataset.htm
  • C. K. Gupta, V. Lokesha, S. B. Shwetha, and P. S. Ranjini, “On the symmetric division DEG index of a graph,” Southeast Asian Bulletin of Mathematics 40 (2016): 59–80.
  • E. Estrada, “Atom-bond connectivity and the energetic of branched alkanes,” Chemical Physics Letters 463 (2008): 422–25.
  • B. Furtula, and I. Gutman, “A forgotten topological index,” Journal of Mathematical Chemistry 53(2015): 1184–90.
  • J. Sedlar, D. Stevanović, and A. Vasilyev, “On the inverse sum indeg index,” Discrete Applied Mathematics 184 (2015): 202–12.
  • S. J. Cyvin, J. Brunvoll, B. R. N. Cyvin, J. L. Bergan, and E. Brendsdal, “The Simplest Coronoids: Hollow Hexagons,” Structural Chemistry 2 (1991): 555–66.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.