369
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Tetrazoloquinoline-1,2,3-Triazole Derivatives as Antimicrobial Agents: Synthesis, Biological Evaluation and Molecular Docking Study

, , , , , & show all
Pages 1920-1941 | Received 21 Jun 2020, Accepted 05 Sep 2020, Published online: 16 Sep 2020

References

  • D. J. Sheehan, C. A. Hitchcock, and C. M. Sibley, “Current and Emerging Azole Antifungal Agents,” Clinical Microbiology Reviews 12, no. 1 (1999): 40–79.
  • R. Cha, and J. D. Sobel, “Fluconazole for the Treatment of Candidiasis: 15 Years Experience,” Expert Review of Anti-Infective Therapy 2, no. 3 (2004): 357–66.
  • N. H. Georgopapadakou and T. J. Walsh, “Antifungal Agents: Chemotherapeutic Targets and Immunologic Strategies,” Antimicrobial Agents and Chemotherapy 40, no. 2 (1996): 279–91.
  • M. A. Pfaller, S. A. Messer, R. J. Hollis, and R. N. Jones, “In Vitro Activities of Posaconazole (Sch 56592) Compared with Those of Itraconazole and Fluconazole against 3685 Clinical Isolates of Candida Spp. and Cryptococcus neoformans,” Antimicrobial Agents and Chemotherapy 45, no. 10 (2001): 2862–4.
  • L. Jeu, F. J. Piacenti, A. G. Lyakhovetskiy, and H. B. Fung, “Voriconazole,” Clinical Therapeutics 25, no. 5 (2003): 1321–81.
  • G. I. Lepesheva, N. G. Zaitseva, W. D. Nes, W. Zhou, M. Arase, J. Liu, G. C. Hill, and M. R. Waterman, “CYP51 from Trypanosoma cruzi: A Phyla-Specific Residue in the B' Helix Defines Substrate Preferences of Sterol 14Alpha-Demethylase,” The Journal of Biological Chemistry 281, no. 6 (2006): 3577–85.
  • H. Shiraki, M. P. Kozar, V. Melendez, T. H. Hudson, C. Ohrt, A. J. Magill, and A. J. Lin, “Antimalarial Activity of Novel 5-Aryl-8-Aminoquinoline Derivatives,” Journal of Medicinal Chemistry 54, no. 1 (2011): 131–42.
  • C. Manera, M. G. Cascio, V. Benetti, M. Allara, T. Tuccinardi, A. Martinelli, G. Saccomanni, E. Vivoli, C. Ghelardini, V. D. Marzo, et al. “New 1,8-Naphthyridine and Quinoline Derivatives as CB2 Selective Agonists,” Bioorganic & Medicinal Chemistry Letters 17, no. 23 (2007): 6505–10.
  • S. B. Marganakop, R. R. Kamble, T. Taj, and M. Y. Kariduraganvar, “An Efficient One-Pot Cyclization of Quinoline Thiosemicarbazones to Quinolines Derivatized with 1,3,4-Thiadiazole as Anticancer and Anti-Tubercular Agents,” Medicinal Chemistry Research 21, no. 2 (2012): 185–91.
  • A. M. Gilbert, M. G. Bursavich, S. Lombardi, K. E. Georgiadis, E. Reifenberg, C. Flannery, and E. A. Morris, “N-((8-Hydroxy-5-Substituted-Quinolin-7-yl)(Phenyl)Methyl)-2-Phenyloxy/Amino-Acetamide Inhibitors of ADAMTS-5 (Aggrecanase-2),” Bioorganic & Medicinal Chemistry Letters 18, no. 24 (2008): 6454–7.
  • S. Chen, R. Chen, M. He, R. Pang, Z. Tan, and M. Yang, “Design, Synthesis, and Biological Evaluation of Novel Quinoline Derivatives as HIV-1 Tat-TAR Interaction Inhibitors,” Bioorganic & Medicinal Chemistry 17 (2009): 1948–56.
  • S. Rossiter, J.-M. Péron, P. J. Whitfield, and K. Jones, “Synthesis and Anthelmintic Properties of Arylquinolines with Activity against Drug-Resistant Nematodes,” Bioorganic & Medicinal Chemistry Letters 15, no. 21 (2005): 4806–8.
  • X. Ma, W. Zhou, and R. Brun, “Synthesis, In Vitro Antitrypanosomal and Antibacterial Activity of Phenoxy, Phenylthio or Benzyloxy Substituted Quinolones,” Bioorganic & Medicinal Chemistry Letters 19, no. 3 (2009): 986–9.
  • T. A. Rano, E. S. McMaster, P. D. Pelton, M. Yang, K. T. Demarest, and G. H. Kuo, “Design and Synthesis of Potent Inhibitors of Cholesteryl Ester Transfer Protein (CETP) Exploiting a 1,2,3,4-Tetrahydroquinoline Platform,” Bioorganic & Medicinal Chemistry Letters 19, no. 9 (2009): 2456–60.
  • D. Edmont, R. Rocher, C. Plisson, and J. Chenault, “Synthesis and Evaluation of Quinoline Carboxyguanidines as Antidiabetic Agents,” Bioorganic & Medicinal Chemistry Letters 10, no. 16 (2000): 1831–4.
  • A. H. Kategaonkar, P. V. Shinde, A. H. Kategaonkar, S. K. Pasale, B. B. Shingate, and M. S. Shingare, “Synthesis and Biological Evaluation of New 2-Chloro-3-((4-Phenyl-1H-1,2,3-Triazol-1-yl)Methyl)Quinoline Derivatives via Click Chemistry Approach,” European Journal of Medicinal Chemistry 45, no. 7 (2010): 3142–6.
  • (a) R. C. Venkata, V. D. Mukund, G. T. Santosh, and K. Yadagiri, “Novel 1,2,3 triazole antifungal agents and preparation thereof” (US Patent US 9,981,923B2; (b) K. N. Venugopala, M. A. Khedr, Y. R. Girish, S. Bhandary, D. Chopra, M. A. Morsy, B. E. Aldhubiab, P. K. Deb, M. Attimarad, A. B. Nair, et al., “Crystallography, In Silico Studies, and In Vitro Antifungal Studies of 2, 4, 5 Trisubstituted 1, 2, 3-Triazole Analogues,” Antibiotics 9 (2020): 350.
  • K. N. Venugopala, G. B. Dharma Rao, S. Bhandary, M. Pillay, D. Chopra, B. E. Aldhubiab, M. Attimarad, O. I. Alwassil, S. Harsha, and K. Mlisana, “Design, Synthesis, and Characterization of (1-(4-Aryl)-1H-1,2,3-Triazol-4-yl)Methyl, Substituted Phenyl-6-Methyl-2-Oxo-1,2,3,4-Tetrahydropyrimidine-5-Carboxylates against Mycobacterium tuberculosis,” Drug Design, Development and Therapy 10 (2016): 2681–90.
  • (a) S. G. Agalave, R. S. Maujan, and V. S. Pore, “Click Chemistry: 1,2,3-Triazoles as Pharmacophores,” Chemistry - An Asian Journal 6 (2011): 2696–2718 and references cited therein; (b) M. Hussain, T. Qadri, Z. Hussain, A. Saeed, P. A. Channar, S. A. Shehzadi, M. Hassan, F. A. Larik, T. Mahmood, and A. Malik, “Synthesis, Antibacterial Activity and Molecular Docking Study of Vanillin Derived 1,4-Disubstituted 1,2,3-Triazoles as Inhibitors of Bacterial DNA Synthesis,” Heliyon 5 (2019): e02812.
  • M. R. Senger, L. C. Gomes, S. B. Ferreira, C. R. Kaiser, V. F. Ferreira, and F. P. Silva, “Kinetics Studies on the Inhibition Mechanism of Pancreatic α-Amylase by Glycoconjugated 1H-1,2,3-Triazoles: A New Class of Inhibitors with Hypoglycemiant Activity,” ChemBioChem: A European Journal of Chemical Biology 13, no. 11 (2012): 1584–93.
  • T. El. Malah, H. F. Nour, A. A. E. Satti, B. A. Hemdan, and W. A. El-Sayed, “Design, Synthesis, and Antimicrobial Activities of 1,2,3-Triazole Glycoside Clickamers,” Molecules 25, no. 4 (2020): 790.
  • M. J. Genin, D. A. Allwine, D. J. Anderson, M. R. Barbachyn, D. Edward Emmert, S. A. Garmon, D. R. Graber, K. C. Grega, J. B. Hester, D. K. Hutchinson, et al. “Substituent Effects on the Antibacterial Activity of Nitrogen-Carbon-Linked (Azolylphenyl)Oxazolidinones with Expanded Activity against the Fastidious Gram-Negative Organisms Haemophilus influenzae and Moraxella catarrhalis,” Journal of Medicinal Chemistry 43, no. 5 (2000): 953–70.
  • R. J. Bochis, J. C. Chabala, E. Harris, L. H. Peterson, L. Barash, T. Beattie, J. E. Brown, D. W. Graham, F. S. Waksmunski, M. Tischler, et al. “Benzylated 1,2,3-Triazoles as Anticoccidiostats,” Journal of Medicinal Chemistry 34, no. 9 (1991): 2843–52.
  • J. L. Kelley, C. S. Koble, R. G. Davis, E. W. Mclean, F. E. Soroko, and B. R. Cooper, “1-(Fluorobenzyl)-4-Amino-1H-1,2,3-Triazolo[4,5-c]Pyridines: Synthesis and Anticonvulsant Activity,” Journal of Medicinal Chemistry 38, no. 20 (1995): 4131–4.
  • R. Raj, P. Singh, P. Singh, J. Gut, P. J. Rosenthal, and V. Kumar, “Azide-Alkyne Cycloaddition en Route to 1H-1,2,3-Triazole-Tethered 7-Chloroquinoline-Isatin Chimeras: Synthesis and Antimalarial Evaluation,” European Journal of Medicinal Chemistry 62 (2013): 590–6.
  • M. H. Shaikh, D. D. Subhedar, M. Arkile, V. M. Khedkar, N. Jadhav, D. Sarkar, and B. B. Shingate, “Synthesis and Bioactivity of Novel Triazole Incorporated Benzothiazinone Derivatives as Antitubercular and Antioxidant Agent,” Bioorganic & Medicinal Chemistry Letters 26, no. 2 (2016): 561–9.
  • B. L. Wilkinson, H. Long, E. Sim, and A. J. Fairbanks, “Synthesis of Arabino Glycosyl Triazoles as Potential Inhibitors of Mycobacterial Cell Wall Biosynthesis,” Bioorganic & Medicinal Chemistry Letters 18, no. 23 (2008): 6265–7.
  • V. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. B. Sharpless, “A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes,” Angewandte Chemie International Edition 41, no. 14 (2002): 2596–9.
  • C. W. Tornoe, C. Christensen, and M. Meldal, “Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides,” The Journal of Organic Chemistry 67, no. 9 (2002): 3057–64.
  • H. C. Kolb, M. G. Finn, and K. B. Sharpless, “Click Chemistry: Diverse Chemical Function from a Few Good Reactions,” Angewandte Chemie International Edition 40, no. 11 (2001): 2004–21.
  • (a) V. A. Ostrovskii, R. E. Trifonov, and E. A. Popova, “Medicinal Chemistry of Tetrazoles,” Russian Chemical Bulletin 61 (2012): 768–80 and references cited therein; (b) P. B. Mohite and V. H. Bhaskar, “Potential Pharmacological Activities of Tetrazoles in the New Millennium,” International Journal of PharmTech Research 3 (2011): 1557–66 and references cited therein; (c) S. Q. Wang, Y. F. Wang, and Z. Xu, “Tetrazole Hybrids and Their Antifungal Activities,” European Journal of Medicinal Chemistry 170 (2019): 225–34; (d) C. Gao, L. Chang, Z. Xu, X. F. Yan, C. Ding, F. Zhao, X. Wu, and L. S. Feng, “Recent Advances of Tetrazole Derivatives as Potential Anti-Tubercular and Anti-Malarial Agents,” European Journal of Medicinal Chemistry 163 (2018): 404–12; (e) P. F. Lamie, J. N. Philoppes, A. A. Azouz, and N. M. Safwat, “Novel Tetrazole and Cyanamide Derivatives as Inhibitors of Cyclooxygenase-2 Enzyme: Design, Synthesis, Anti-Inflammatory Evaluation, Ulcerogenic Liability and Docking Study,” Journal of Enzyme Inhibition and Medicinal Chemistry 32 (2017): 805–20.
  • K. D. Thomas, A. V. Adhikari, and N. S. Shetty, “Design, Synthesis and Antimicrobial Activities of Some New Quinoline Derivatives Carrying 1,2,3-Triazole Moiety,” European Journal of Medicinal Chemistry 45, no. 9 (2010): 3803–10.
  • M. C. Joshi, K. J. Wicht, D. Taylor, R. Hunter, P. J. Smith, and T. J. Egan, “In Vitro Antimalarial Activity, β-Haematin Inhibition and Structure-Activity Relationships in a Series of Quinoline Triazoles,” European Journal of Medicinal Chemistry 69 (2013): 338–47.
  • G. R. Pereira, G. C. Brandao, L. M. Arantes, H. A. de Oliveira, Jr., R. C. de Paula, M. F. A. do Nascimento, F. M. dos Santos, R. K. da Rocha, J. C. D. Lopes, and A. B. de. Oliveira, “7-Chloroquinolinotriazoles: Synthesis by the Azide-Alkyne Cycloaddition Click Chemistry, Antimalarial Activity, Cytotoxicity and SAR Studies,” European Journal of Medicinal Chemistry 73 (2014): 295–309.
  • T. Aravinda, H. S. Bhojya Naik, and H. R. Prakash Naik, “1,2,3-Triazole Fused Quinoline-Peptidomimetics: Studies on Synthesis, DNA Binding and Photonuclease Activity,” International Journal of Peptide Research and Therapeutics 15, no. 4 (2009): 273–9.
  • (a) D. D. Subhedar, M. H. Shaikh, M. A. Arkile, A. Yeware, D. Sarkar, and B. B. Shingate, “Facile Synthesis of 1,3-Thiazolidin-4-Ones as Antitubercular Agents,” Bioorganic & Medicinal Chemistry Letters 26 (2016): 1704–8; (b) D. D. Subhedar, M. H. Shaikh, L. Nawale, A. Yeware, D. Sarkar, F. A. K. Khan, J. N. Sangshetti, and B. B. Shingate, “Novel Tetrazoloquinoline-Rhodanine Conjugates: Highly Efficient Synthesis and Biological Evaluation,” Bioorganic Medicinal & Chemistry Letters 26 (2016): 2278–83; (c) M. H. Shaikh, D. D. Subhedar, F. A. K. Khan, J. N. Sangshetti, and B. B. Shingate, “1,2,3-Triazole Incorporated Coumarin Derivatives as a Potential Antifungal and Antioxidant Agents,” Chinese Chemical Letters 27 (2016): 295–301; (d) M. H. Shaikh, D. D. Subhedar, L. Nawale, D. Sarkar, F. A. K. Khan, J. N. Sangshetti, and B. B. Shingate, “1,2,3-Triazole Derivatives as Antitubercular Agents; Synthesis, Biological Evaluation and Molecular Docking Study,” Medicinal Chemistry Communications 6 (2015): 1104–16.
  • (a) National Committee for Clinical Laboratory Standard, “Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeast Approved Standard” (Document M27-A, National Committee for Clinical Laboratory Standards, Wayne, PA, 1997); (b) National Committee for Clinical Laboratory Standard, “Reference Method for Broth Dilution Antifungal Susceptibility Testing of Conidium Forming Filamentous Fungi Proposed Standard” (Document M38-P, National Committee for Clinical Laboratory Standard, Wayne, PA, 1998); (c) National Committee for Clinical Laboratory Standards, “Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically Approved Standard”, 5th ed. (M7-A5, NCCLS, Villanova, PA, 2000).
  • (a) A. Khan, S. Sarkar, and D. Sarkar, “Bactericidal Activity of 2-Nitroimidazole against the Active Replicating Stage of Mycobacterium bovis BCG and Mycobacterium tuberculosis with Intracellular Efficacy in THP-1 Macrophages,” International Journal of Antimicrobial Agents 32 (2008): 40–5; (b) U. Singh, S. Akhtar, A. Mishra, and D. Sarkar, “A Novel Screening Method Based on Menadione Mediated Rapid Reduction of Tetrazolium Salt for Testing of Anti-Mycobacterial Agents,” Journal of Microbiological Methods 84 (2011): 202–7; (c) S. Sarkar and D. Sarkar, “Potential Use of Nitrate Reductase as a Biomarker for the Identification of Active and Dormant Inhibitors of Mycobacterium tuberculosis in a THP-1 Infection Model,” Journal of Biomolecular Screening 17 (2012): 966–73.
  • M. Burits and F. Bucar, “Antioxidant Activity of Nigella sativa Essential Oil,” Phytotherapy Research 14, no. 5 (2000): 323–8.
  • C. A. Lipinski, L. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings,” Advanced Drug Delivery Reviews 46, no. 1–3 (2001): 3–26.
  • Molinspiration Chemoinformatics, Brastislava, Slovak Republic, 2014, http://www.molinspiration.com/cgi-bin/properties.
  • Y. H. Zhao, M. H. Abraham, J. Le, A. Hersey, C. N. Luscombe, G. Beck, B. Sherborne, and I. Cooper, “Rate Limited Steps of Human Oral Absorption and QSAR Studies,” Pharmaceutical Research 19, no. 10 (2002): 1446–57.
  • “Drug-Likeness and Molecular Property Prediction,” http://www.molsoft.com/mprop/.
  • P. Ertl, B. Rohde, and P. Selzer, “Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties,” Journal of Medicinal Chemistry 43, no. 20 (2000): 3714–7.
  • R. M. Singh and A. Srivastava, “Vilsmeier-Haack Reagent: A Facile Synthesis of 2-Chloro-3-Formylquinolines from N-Acetamides and Transformation into Different Functionalities,” Indian Journal of Chemistry 44B (2005): 1868–75.
  • N. K. Ladani, M. P. Patel, and R. G. Patel, “An Efficient Three Component One-Pot Synthesis of Some New Octahydroquinazolinone Derivatives and Investigation of Their Antimicrobial Activities,” Arkivoc vii (2009): 292–302.
  • (a) Schrodinger Suite 2015-4 QM-Polarized Ligand Docking Protocol; Glide Version 6.9 (New York, NY: Schrodinger, LLC, 2015); Jaguar Version 9.0 (New York, NY: Schrodinger, LLC, 2015); QSite Version 6.9 (New York, NY: Schrodinger, LLC, 2015; (b) R. A. Friesner, R. B. Murphy, M. P. Repasky, L. L. Frye, J. R. Greenwood, T. A. Halgren, P. C. Sanschagrin, and D. T. Mainz, “Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein-Ligand Complexes,” Journal of Medicinal Chemistry 49 (2006): 6177–96 and related references cited therein.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.