147
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Studies on Interactions of 5,6-Diaryl-3-(Quinolin-2-YL)-1,2,4-Triazines with Arynes: A TM-Free One-Step Approach to 2-(3,4-Diarylisoquinolin-1-YL)Quinolines

, , , , , , , , & show all
Pages 1994-2001 | Received 07 May 2020, Accepted 11 Sep 2020, Published online: 01 Oct 2020

Reference

  • M. Shamma, The Isoquinoline Alkaloids. Chemistry and Pharmacology, Vol. 25 (New York; London: Academic Press, 1972).
  • (a) M. Chrzanowska, A. Grajewska, and M. D. Rozwadowska, “Asymmetric Synthesis of Isoquinoline Alkaloids: 2004-2015,” Chemical Reviews 116 (2016): 12369–465 (b) D. J. Newman and G. M. Cragg, “Natural Products as Sources of New Drugs from 1981 to 2014,” Journal of Natural Products 79 (2016): 629–61.
  • (a) C. Cuevas, M. Pérez, M. J. Martín, J. L. Chicharro, C. Fernández-Rivas, M. Flores, A. Francesch, P. Gallego, M. Zarzuelo, F. de La Calle, et al. “Synthesis of Ecteinascidin ET-743 and Phthalascidin Pt-650 from Cyanosafracin B,” Organic Letters 2 (2000): 2545–548; (b) E. R. Welin, A. Ngamnithiporn, M. Klatte, G. Lapointe, G. M. Pototschnig, M. S. J. McDermott, D. Conklin, C. D. Gilmore, P. M. Tadross, C. K. Haley, et al. “Concise Total Syntheses of (–)-Jorunnamycin A and (–)-Jorumycin Enabled by Asymmetric Catalysis,” Science 363 (2019): 270–75; (c) W. Liu, X. Liao, W. Dong, Z. Yan, N. Wang, and Z. Liu, “Total Synthesis and Cytotoxicity of (−)-Jorumycin and Its Analogues,” Tetrahedron 68 (2012): 2759–764; (d) N. Saito, C. Tanaka, Y.-I. Koizumi, K. Suwanborirux, S. Amnuoypol, S. Pummangura, and A. Kubo, “Chemistry of Renieramycins. Part 6: Transformation of Renieramycin M into Jorumycin and Renieramycin J Including Oxidative Degradation Products, Mimosamycin, Renierone, and Renierol Acetate,” Tetrahedron 60 (2004): 3873–881; (e) A. Fontana, P. Cavaliere, S. Wahidulla, C. G. Naik, and G. Cimino, “A New Antitumor Isoquinoline Alkaloid from the Marine Nudibranch Jorunna Funebris,” Tetrahedron 56 (2000): 7305–308.
  • R. Musiol, “An Overview of Quinoline as a Privileged Scaffold in Cancer Drug Discovery,” Expert Opinion on Drug Discovery 12, no. 6 (2017): 583–97.
  • I. Khirojuki, T. Jasusi, T. Kharukazu, and O. Tosiaki. (Patent RU 2 443 110 C2, published February 27, 2012).
  • G. Saito, D. Velluto, and M. Resmini, “2018 Synthesis of 1,8-Naphthalimide-Based Probes with Fluorescent Switch Triggered by Flufenamic Acid,” Royal Society Open Science 5, no. 6 (2018): 172137.
  • (a) Y. Mori, K. Isozaki, and K. Maeda, “Chemiluminescence of 1,1′-biisoquinolinium and 2,2′-biquinolinium salts. Reactions of electron-rich olefins with molecular oxygen,” Journal of Chemical Society, Perkin Transactions 2 (1997): 1969–975; (b) K. Mayeda, Y. Matsuyama, K. Isozaki, S. Yamada, and Y. Mori, “Mechanism of the chemiluminescence of biisoquinolinium salts,” Journal of Chemical Society, Perkin Transactions 2 (1997): 121–126.
  • (a) Y. Qiong, J. Qi, and Z. M. A. Judeh, “Catalytic anti-selective asymmetric Henry (nitroaldol) reaction catalyzed by Cu(I)–amine–imine complexes,” Tetrahedron Asymmetry 22 (2011): 2065–70; (b) G. Chelucci, A. Saba, G. Sanna, F. Soccolini, “Chiral 2,2′-bipyridines, 5,6-dihydro-1,10-phenanthrolines and 1,10-phenanthrolines as ligands for enantioselective palladium catalyzed allylic substitution,” Tetrahedron Asymmetry 11 (2000): 3427–38; (c) M. Nakajima, Y. Sasaki, M. Shiro, and S.-i Hashimoto, “A novel axially dissymmetric chiral ligand based on amine N-oxide: (R)- and (S)-3,3′-dimethyl-2,2′-biquinoline N,N′-dioxide,” Tetrahedron Asymmetry 8 (1997): 341–44; (d) F. Masayuki and H. Akihiro, Chemistry Express 7 (1992): 329–32; For review see: (e) G. C. R. P. Thummel, Chemical Reviews102 (2002): 3129–170.
  • D. E. Stephens, J. Lakey-Beitia, J. E. Burch, H. D. Arman, and O. V. Larionov, “ Mechanistic Insights into the Potassium Tert-Butoxide-Mediated syntHesis of N-Heterobiaryls,” Chemical Communications (Cambridge, England) 52, no. 64 (2016): 9945–8.
  • (a) L.-x. Dai, Z.-h. Zhou, Y.-z. Zhang, C.-z. Ni, Z.-m. Zhang, and Y.-f. Zhou, “1,1′-Bi-isoquinoline: a chiral bidentate N-donor ligand with C2-symmetry; formation of optically active complexes with high chiral recognition,” Journal of the Chemical Society. Chemical communications (1987): 1760–762; (b) Z.-J. Wang, X. Wang, J.-J. Lv, J.-J. Feng, X. Xu, A.-J. Wang, and Z. Liang, “Bimetallic Au–Pd nanochain networks: facile synthesis and promising application in biaryl synthesis,” New Journal of Chemistry, 41 (2017) 3894–899; (c) Y. M. Chang, S. H. Lee, M. Y. Cho, B. W. Yoo, H. J. Rhee, S. H. Lee, and C. M. Yoon, “Homocoupling of Aryl Iodides and Bromides Using a Palladium/Indium Bimetallic System,” Synthetic Communications, 35 (2005): 1851–57; (d) O. Iyoda and N. O. Sato, “Homocoupling of Aryl Halides Using Nickel(II) Complex and Zinc in the Presence of Et4NI. An Efficient Method for the Synthesis of Biaryls and Bipyridines,” Bulletin of the Chemical Society of Japan 63 (1990): 80–7; (e) J. Gonzalo, R. Cristobalde los Rios, and A. Lafuente, “Synthesis of n-Chloroquinolines and n-Ethynylquinolines (n = 2, 4, 8): Homo and Heterocoupling Reactions,” Tetrahedron 61 (2005): 9042–51.
  • A. Gorczyński, J. M. Harrowfield, V. Patroniak, and A. R. Stefankiewicz, “Quaterpyridines as Scaffolds for Functional Metallosupramolecular Materials,” Chemical Reviews 116, no. 23 (2016): 14620–74.
  • (a) K. Inamoto, Y. Araki, S. Kikkawa, M. Yonemoto, Y. Tanaka, and Y. Kondo, “Organocatalytic functionalization of heteroaromatic N-oxides with C-nucleophiles using in situ generated onium amide bases,” Organic and Biomolecular Chemistry 11 (2013): 4438–41; (b) I. S. Kovalev, V. L. Rusinov, and O. N. Chupakhin, “Reaction of 2-pyridyllithium with azine N-oxides. Simple and convenient method for the synthesis of 2,2′-bipyridine 1-oxide and 2,2′:6′,2″:6″2′″-tetrapyridine 1′-oxide,” Chemistry of Heterocyclic Compounds 45 (2009): 176; (c) A. K. Jha and N. Jain, “2,2′‐Homocoupled Azine N,N′‐Dioxides or Azine N‐Oxides: CDC‐ or SNAr‐Controlled Chemoselectivity,” European Journal of Organic Chemistry 32 (2017): 4765–72; (d) Y. Liu, J. Bergès, Y. Zaid, F. O. Chahdi, A. Van Der Lee, D. Harakat, E. Clot, F. Jaroschik, and M. Taillefer, “Aerobic and Ligand-Free Manganese-Catalyzed Homocoupling of Arenes or Aryl Halides via in Situ Formation of Aryllithiums,” Journal of Organic Chemistry 84 (2019): 4413–20; (e) H. Yamanaka, M. An-naka, Y. Kondo, and T. Sakamoto, “Studies on Pyrimidine Derivatives. XXXVIII. Cross-Coupling Reaction of N-Heteroaryl Iodides with Ethoxycarbonylmethylzinc Bromide in the Presence of Palladium Catalyst,” Chemical and Pharmaceutical Bulletin 33 (1985): 4309–13; (f) M. Banerji, “Studies on single-electron transfer reagents. Part IV reaction of nitrogen heterocycles with sodium naphthalenide,” Tetrahedron 50 (1994): 9079–96.
  • (a) G. Verniest, X. Wang, N. De Kimpe, and A. Padwa, “Heteroaryl Cross-Coupling as an Entry toward the Synthesis of Lavendamycin Analogues: A Model Study,” Journal of Organic Chemistry 75 (2010): 424–33; (b) S. Dhiman, U. K. Mishra, S. S. V. Ramasastry, Angewandte Chemie International Edition 55 (2016): 737–41; (c) Fujisawa, [Yakugaku Zasshi/Journal of the Pharmaceutical Society of Japan, 1945, vol. 65, p. Ausg. B, S. 555, 563], Chemical Abstract, (1952): 116; (d) D. Chen, G. Xu, Q. Zhou, L. W. Chung, and O. W. Tang, “Practical and Asymmetric Reductive Coupling of Isoquinolines Templated by Chiral Diborons,” Journal of the American Chemical Society 139 (2017): 9767–70.
  • (а) A. M. d'A. Rocha Gonsalves, T. M. V. D. Pinho e Melo, and T. L. Gilchrist, “Synthesis of isoquinolines by cycloaddition of arynes to 1,2,4-triazines,” Tetrahedron, 48, (1992) 6821; (b) D. S. Kopchuk, I. L. Nikonov, G. V. Zyryanov, I. S. Kovalev, V. L. Rusinov, and O. N. Chupakhin, “Preparation of 3-Cyano-1-(2-Pyridyl)Isoquinolines by Using Aryne Intermediates,” Chemistry of Heterocyclic Compounds 50 (2014): 907–10; (c) R. Dhar, W. Hiihnermann, T. Kämpchen, W. Overheu, and G. Seitz, “[4+2]‐Cycloadditionen mit inversem Elektronenbedarf, XVII. Oxepin und 2,7‐Dimethyloxepin als Dienophile bei Diels‐Alder‐Cycloadditionen mit inversem Elektronenbedarf" Chemische Berichte 116 (1983): 97. (d) D. S. Kopchuk, I. L. Nikonov, A. F. Khasanov, S. Gundala, A. P. Krinochkin, P. A. Slepukhin, G. V. Zyryanov, P. Venkatapuram, O. N. Chupakhin, and V. N. Charushin, “One-step synthesis of 1,4-bis(het)arylisoquinolines by the reaction of 1,2,4-triazines with arynes,” Chemistry of Heterocyclic Compounds 55 (2019): 978–84; (e) W. W. Xie, Y. Liu, R. Yuan, D. Zhao, T. Z. Yu, J. Zhang, and C. S. Da, “Organocatalytic functionalization of heteroaromatic N-oxides with C-nucleophiles using in situ generated onium amide bases,” Advanced Synthesis and Catalysis 358, no. 6 (2016): 994–1002; (f) K. Inamoto, Y. Araki, S. Kikkawa, M. Yonemoto, Y. Tanaka, and Y. Kondo, Organic and Biomolecular Chemistry 27 (2013): 4438–41.
  • (а) I. L. Nikonov, D. S. Kopchuk, I. S. Kovalev, G. V. Zyryanov, A. F. Khasanov, P.A. Slepukhin, V. L. Rusinov, and O. N. Chupakhin, “ Benzyne-Mediated Rearrangement of 3-(2-Pyridyl)-1,2,4-Triazines into 10-(1H-1,2,3-Triazol-1-yl)Pyrido[1,2-a]Indoles,” Tetrahedron Letters 54 (2013): 6427–29; (b) D. S. Kopchuk, I. L. Nikonov, G. V. Zyryanov, E. V. Nosova, I. S. Kovalev, P. A. Slepukhin, V. L. Rusinov, and O. N. Chupakhin, “Aryne Approach Towards 2,3-Difluoro-10-(1H-1,2,3-Triazol-1-yl)Pyrido[1,2-a]Indoles,” Mendeleev Communications 25 (2015): 13–14.
  • D. S. Kopchuk, N. V. Chepchugov, A. F. Khasanov, I. S. Kovalev, S. Santra, E. V. Nosova, G. V. Zyryanov, A. Majee, V. L. Rusinov, and O. N. Chupakhin, “A One-Pot Approach to 10-(1H-1,2,3-Triazol-1-yl)Pyrimido[1,2-a]Indoles via Aryne-Mediated Transformations of 3-(Pyrimidin-2-yl)-1,2,4-Triazines,”Tetrahedron Letters 57, no. 34 (2016): 3862–5.
  • S. Gundala, M. R. Guda, A. F. Khasanov, D. S. Kopchuk, A. P. Krinochkin, S. Santra, G. V. Zyryanov, P. Venkatapuram, J. R. Garcia, and V. N. Charushin, “A PASE-Based Approach towards 12-(1H-1,2,3-Triazol-1-yl)Indolo[2,1-a]Isoquinolines via the Reaction of 3-(Isoquinolin-1-yl)-1,2,4-Triazines with Benzyne,” Mendeleev Communications 29, no. 4 (2019): 369–71.
  • D. S. Kopchuk, I. L. Nikonov, A. F. Khasanov, K. Giri, S. Santra, I. S. Kovalev, E. V. Nosova, S. Gundala, P. Venkatapuram, G. V. Zyryanov, et al. “Studies on the Interactions of 5-R-3-(2-pyridyl)-1,2,4-Triazines with Arynes: Inverse Demand Aza-Diels-Alder Reaction versus Aryne-Mediated Domino Process,” Organic & Biomolecular Chemistry 16, no. 28 (2018): 5119–35.
  • F. H. Case, “The Preparation of Hydrazidines and as-Triazines Related to Substituted 2-Cyanopyridines 1,” The Journal of Organic Chemistry 30, no. 3 (1965): 931–3.
  • S. Gundala, A. F. Khasanov, D. S. Kopchuk, E. S. Starnoskaya, Y. K. Shtaitz, A. P. Krinochkin, E. B. Gorbunov, G. V. Zyryanov, V. Padmavathic Oleg, and N. Chupakhin, Tetrahedron Letters (2020).
  • D. S. Kopchuk, N. V. Chepchugov, E. B. Gorbunov, G. V. Zyryanov, I. S. Kovalev, E. V. Nosova, P. A. Slepukhin, V. L. Rusinov, and O. N. Chupakhin, “3,4,5,6-Tetrafluoro-1,2-Dehydrobenzene in Reactions with 1,2,4-Triazine,” Journal of the Iranian Chemical Society 14, no. 7 (2017): 1507–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.