209
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of Quinolines, Quinazolines and Spiro-Quinazolines Using Nanoporous TiO2 Containing an Ionic Liquid Bridge as an Efficient and Reusable Catalyst

& ORCID Icon
Pages 2087-2106 | Received 06 Apr 2020, Accepted 19 Sep 2020, Published online: 08 Oct 2020

References

  • A. Venkanna, K. Swapna, and P. V. Rao, “Recyclable Nano Copper Oxide Catalyzed Synthesis of Quinoline-2,3-Dicarboxylates under Ligand Free Conditions,” RSC Advances 4, no. 29 (2014): 15154–60.
  • V. Cecchetti, G. Cruciani, E. Filipponi, A. Fravolini, O. Tabarrini, and T. Xin, “Synthesis and Antibacterial Evaluation of [1,3]Benzothiazino[3,2-a]Quinoline- and [3,1]Benzothiazino[1,2-a]Quinoline-6-Carboxylic Acid Derivatives,” Bioorganic & Medicinal Chemistry 5, (1997): 1339–44.
  • S. T. Selvi, V. Nadaraj, S. Mohan, R. Sasi, and M. Hema, “Solvent Free Microwave Synthesis and Evaluation of Antimicrobial Activity of pyrimido[4,5-b]- and pyrazolo[3,4-b]quinolines ,” Bioorganic & Medicinal Chemistry 14, no. 11 (2006): 3896–903.
  • K. Kaur, M. Jain, R. P. Reddy, and R. Jain, “Quinolines and Structurally Related Heterocycles as Antimalarials,” European Journal of Medicinal Chemistry 45, no. 8 (2010): 3245–64.
  • V. R. Solomon, S. K. Puri, K. Srivastava, and S. B. Katti, “Design and Synthesis of New Antimalarial Agents from 4-Aminoquinoline,” Bioorganic & Medicinal Chemistry 13, no. 6 (2005): 2157–65.
  • M. A. Loza-Mejía, K. Maldonado-Hernández, F. Rodríguez-Hernández, R. Rodríguez-Sotres, I. González-Sánchez, A. Quintero, J. D. Solano, and A. Lira-Rocha, “Synthesis, Cytotoxic Evaluation, and DNA Binding of Novel thiazolo[5,4-b]quinoline derivatives,” Bioorganic & Medicinal Chemistry 16, no. 3 (2008): 1142–9.
  • S. O. Malayeri, K. Abnous, A. Arab, M. Akaberi, S. Mehri, A. Zarghi, and R. Ghodsi, “Design, Synthesis and Biological Evaluation of 7-(Aryl)-2,3-Dihydro-[1,4]Dioxino[2,3-g]Quinoline Derivatives as Potential Hsp90 Inhibitors and Anticancer Agents,” Bioorganic & Medicinal Chemistry 25, no. 3 (2017): 1294–302.
  • Stéphanie Vandekerckhove, Christian Müller, Dieter Vogt, Carmen Lategan, Peter J. Smith, Kelly Chibale, Norbert De Kimpe, and Matthias D'hooghe, “Synthesis and Antiplasmodial Evaluation of Novel (4-Aminobutyloxy)Quinolines,” Bioorganic & Medicinal Chemistry Letters 23, no. 1 (2013): 318–22.
  • D. Bompart, J. Núñez-Durán, D. Rodríguez, V. V. Kouznetsov, C. M. Meléndez Gómez, F. Sojo, F. Arvelo, G. Visbal, A. Alvarez, X. Serrano-Martín, et al. “Anti-Leishmanial Evaluation of C2-Aryl Quinolines: Mechanistic Insight on Bioenergetics and Sterol Biosynthetic Pathway of Leishmania braziliensis,” Bioorganic & Medicinal Chemistry 21, no. 14 (2013): 4426–31.
  • Gisela C. Muscia, Stephanie Hautmann, Graciela Y. Buldain, Silvia E. Asís, and Michael Gütschow, “Synthesis and Evaluation of 2-(1H-Indol-3-yl)-4-Phenylquinolines as Inhibitors of Cholesterol Esterase,” Bioorganic & Medicinal Chemistry Letters 24, no. 6 (2014): 1545–9.
  • Y. Wu, Z. Chen, Y. Liu, L. Yu, L. Zhou, S. Yang, and L. Lai, “Quinoline-4-Methyl Esters as Human Nonpancreatic Secretory Phospholipase A2 Inhibitors,” Bioorganic & Medicinal Chemistry 19, no. 11 (2011): 3361–6.
  • H. C. Polonini, R. M. Dias, I. O. Souza, K. M. Gonçalves, T. B. Gomes, N. R. Raposo, and A. D. da Silva, “Quinolines Derivatives as Novel Sunscreening Agents,” Bioorganic & Medicinal Chemistry Letters 23, no. 16 (2013): 4506–10.
  • P. M. S. Bedi, V. Kumar, and M. P. Mahajan, “Synthesis and Biological Activity of Novel Antibacterial Quinazolines,” Bioorganic & Medicinal Chemistry Letters 14, no. 20 (2004): 5211–3.
  • R. Rohini, K. Shanker, P. M. Reddy, Y.-P. Ho, and V. Ravinder, “Mono and Bis-6-Arylbenzimidazo[1,2-c]Quinazolines: A New Class of Antimicrobial Agents,” European Journal of Medicinal Chemistry 44, no. 8 (2009): 3330–9.
  • A. M. Alanazi, A. A. M. Abdel-Aziz, I. A. Al-Suwaidan, S. G. Abdel-Hamide, T. Z. Shawer, and A. S. El-Azab, “Design, Synthesis and Biological Evaluation of Some Novel Substituted Quinazolines as Antitumor Agents,” European Journal of Medicinal Chemistry 79, (2014): 446–54.
  • H. G. Bonacorso, W. C. Rosa, S. M. Oliveira, I. Brusco, C. C. D. Pozza, P. A. Nogara, C. W. Wiethan, M. B. Rodrigues, C. P. Frizzo, and N. Zanatta, “Synthesis and Antinociceptive Activity of New 2-Substituted 4-(Trifluoromethyl)-5,6-Dihydrobenzo[h]Quinazolines,” Bioorganic & Medicinal Chemistry Letters 26, no. 19 (2016): 4808–14.
  • V. G. Ugale, and S. B. Bari, “Quinazolines: New Horizons in Anticonvulsant Therapy,” European Journal of Medicinal Chemistry 80, (2014): 447–501.
  • R. K. Goel, V. Kumar, and M. P. Mahajan, “Quinazolines Revisited: search for Novel Anxiolytic and GABAergic Agents,” Bioorganic & Medicinal Chemistry Letters 15, no. 8 (2005): 2145–8.
  • S. Kumar, N. Shakya, S. Gupta, J. Sarkar, and D. P. Sahu, “Synthesis and Biological Evaluation of Novel 4-(Hetero) Aryl-2-Piperazino Quinazolines as anti-Leishmanial and anti-Proliferative Agents,” Bioorganic & Medicinal Chemistry Letters 19no. 9 (2009): 2542–5.
  • N. Malecki, P. Carato, Bt Rigo, J.-F. Goossens, R. Houssin, C. Bailly, and J.-P. Hénichart, “Synthesis of Condensed Quinolines and Quinazolines as DNA Ligands,” Bioorganic & Medicinal Chemistry 12, no. 3 (2004): 641–7.
  • B. Palakshi Reddy, P. Iniyavan, S. Sarveswari, and V. Vijayakumar, “Nickel Oxide Nanoparticles Catalyzed Synthesis of Poly-Substituted Quinolines via Friedlander Hetero-Annulation Reaction,” Chinese Chemical Letters 25, no. 12 (2014): 1595–600.
  • M. A. Zolfigol, P. Salehi, A. Ghaderi, M. Shiri, and Z. Tanbakouchian, “An Eco-Friendly Procedure for the Synthesis of Polysubstituted Quinolines under Aqueous Media,” Journal of Molecular Catalysis A: Chemical 259, no. 1-2 (2006): 253–8.
  • M. Abdollahi-Alibeik, and M. Pouriayevali, “Nanosized MCM-41 Supported Protic Ionic Liquid as an Efficient Novel Catalytic System for Friedlander Synthesis of Quinolines,” Catalysis Communications 22, (2012): 13–8.
  • Z.-H. Zhang, X.-N. Zhang, L.-P. Mo, Y.-X. Li, and F.-P. Ma, “Catalyst-Free Synthesis of Quinazoline Derivatives Using Low Melting Sugar–Urea–Salt Mixture as a Solvent,” Green Chemistry 14, no. 5 (2012): 1502–6.
  • S. K. Panja, and S. Saha, “Recyclable, Magnetic Ionic Liquid Bmim[FeCl4]-Catalyzed, Multicomponent, Solvent-Free, Green Synthesis of Quinazolines,” RSC Advances 3no. 34 (2013): 14495–500.
  • S. K. Panja, N. Dwivedi, and S. Saha, “I2-Catalyzed Three-Component Protocol for the Synthesis of Quinazolines,” Tetrahedron Letters 53, no. 46 (2012): 6167–72.
  • N. Anand, K. H. P. Reddy, T. Satyanarayana, K. S. R. Rao, and D. R. Burri, “A Magnetically Recoverable γ-Fe2O3 Nanocatalyst for the Synthesis of 2-Phenylquinazolines under Solvent-Free Conditions,” Catalysis Science & Technology 2, no. 3 (2012): 570–4.
  • K. Karnakar, J. Shankar, S. N. Murthy, K. Ramesh, and Y. Nageswar, “An Efficient Protocol for the Synthesis of 2-Phenylquinazolines Catalyzed by Ceric Ammonium Nitrate (CAN),” Synlett 2011, no. 08 (2011): 1089–96. ():
  • M. H. Valkenberg, C. deCastro, and W. F. Hölderich, “Immobilisation of Ionic Liquids on Solid Supports,” Green Chemistry 4, no. 2 (2002): 88–93.
  • A. P. Wight, and M. E. Davis, “Design and Preparation of organic-inorganic hybrid catalysts ,” Chemical Reviews 102, no. 10 (2002): 3589–614.
  • M. Mazloumi, F. Shirini, O. Goli-Jolodar, and M. Seddighi, “Nanoporous TiO2 Containing an Ionic Liquid Bridge as an Efficient and Reusable Catalyst for the Synthesis of N,N′-Diarylformamidines, Benzoxazoles, Benzothiazoles and Benzimidazoles,” New Journal of Chemistry 42, no. 8 (2018): 5742–52.
  • M. Seddighi, F. Shirini, and O. G. Jolodar, “Preparation and Characterization of a RHA/TiO2 Nanocomposite: introduction of an Efficient and Reusable Catalyst for Chemoselective Trimethylsilyl Protection and Deprotection of Alcohols and Phenols,” RSC Advances 6, no. 28 (2016): 23564–70.
  • N. P. Hung, N. T. V. Hoan, and N. V. Nghia, “Synthesis and Characterization of Photocatalytic Material TiO2/SBA-15,” Nanoscience and Nanotechnology 3, (2013): 19–25.
  • D. A. Kumar, J. M. Shyla, and F. P. Xavier, “Synthesis and Characterization of TiO2/SiO2 Nano Composites for Solar Cell Applications,” Applied Nanoscience 2, no. 4 (2012): 429–36.
  • M. H. Baki, F. Shemirani, R. Khani, and M. Bayat, “Applicability of Diclofenac–Montmorillonite as a Selective Sorbent for Adsorption of Palladium (II); Kinetic and Thermodynamic Studies,” Analytical Methods 6, no. 6 (2014): 1875–83.
  • Y. Shao, H. Wan, J. Miao, and G. Guan, “Synthesis of an Immobilized Brønsted Acidic Ionic Liquid Catalyst on Chloromethyl Polystyrene Grafted Silica Gel for Esterification,” Reaction Kinetics, Mechanisms and Catalysis 109, no. 1 (2013): 149–58.
  • S. Ambika, and M. Sundrarajan, “[EMIM] BF4 Ionic Liquid-Mediated Synthesis of TiO2 Nanoparticles Using Vitex Negundo Linn Extract and Its Antibacterial Activity,” Journal of Molecular Liquids 221, (2016): 986–92.
  • F. Shirini, M. Seddighi, and M. Mamaghani, “Sulfonated Rice Husk Ash (RHA-SO3H) as an Efficient and Recyclable Catalyst for the Friedlander Synthesis of Quinolines,” Research on Chemical Intermediates 41, no. 11 (2015): 8673–80.
  • F. Shirini, S. Akbari-Dadamahaleh, and A. Mohammad-Khah, “Rice Husk Ash Supported FeCl2·2H2O: A Mild and Highly Efficient Heterogeneous Catalyst for the Synthesis of Polysubstituted Quinolines by Friedländer Heteroannulation,” Chinese Journal of Catalysis 34, no. 12 (2013): 2200–8.
  • M. Dabiri, P. Salehi, and M. Bahramnejad, “Ecofriendly and Efficient One-Pot Procedure for the Synthesis of Quinazoline Derivatives Catalyzed by an Acidic Ionic Liquid under Aerobic Oxidation Conditions,” Synthetic Communications 40, no. 21 (2010): 3214–25.
  • M. Dabiri, M. Bahramnejad, and S. Bashiribod, “ [Hmim]TFA catalyzed multicomponent reaction: direct, mild, and efficient procedure for the synthesis of 1,2-dihydroquinazoline derivatives ,” Molecular Diversity 14, no. 3 (2010): 507–12. "[Hmim]
  • A. R. Moosavi-Zare, M. A. Zolfigol, and Z. Rezanejad, “Trityl Chloride Promoted the Synthesis of 3-(2, 6-Diarylpyridin-4-yl)-1H-Indoles and 2, 4, 6-Triarylpyridines by in Situ Generation of Trityl Carbocation and Anomeric Based Oxidation in Neutral Media,” Canadian Journal of Chemistry 94, no. 7 (2016): 626–30.
  • M. A. Zolfigol, M. Safaiee, F. Afsharnadery, N. Bahrami-Nejad, S. Baghery, S. Salehzadeh, and F. Maleki, “Silica Vanadic Acid [SiO2–VO(OH)2] as an Efficient Heterogeneous Catalyst for the Synthesis of 1,2-Dihydro-1-Aryl-3H-Naphth[1,2-e][1,3]Oxazin-3-One and 2,4,6-Triarylpyridine Derivatives via Anomeric Based Oxidation,” RSC Advances 5, (2015): 100546–59.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.