154
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Spectroscopic and Structural Investigations on Novel 6-Amino-3-Phenyl-4-(Pyridin-4-yl)-2,4-Dihydropyrano[2,3-c] Pyrazole-5-Carbonitrile by FT-IR, NMR, Docking, and DFT Methods

, , , &
Pages 2288-2304 | Received 11 Jan 2020, Accepted 29 Sep 2020, Published online: 19 Oct 2020

References

  • S. Hatakeyama, N. Ochi, H. Numata, and S. J. Takano, “A New Route to Substituted 3-Methoxycarbonyldihydropyrans; Enantioselective Synthesis of (–)-Methyl Elenolate,” Journal of the Chemical Society, Chemical Communications 17 (1988): 1202–4.
  • A. J. Ciller, N. Martin, C. Seoane, and J. Soto, “Ring Transformation of Isoxazoles into Furan and Pyran Derivatives,” Journal of the Chemical Society, Perkin Transactions 1 (1985): 2581–4.
  • M. Marugan, N. Martin, C. Seoane, and J. L. Soto, “A Facile Preparation of Alkylpyridines from Aminopyrans,” Liebigs Annalen Der Chemie 1989, no. 2 (1989): 145–9.
  • Rafael González, Nazario Martín, Carlos Seoane, JoséL. Marco, Armando Albert, and Félix H. Cano, “The First Asymmetric Synthesis of Polyfunctionalized 4H-Pyrans via Michael Addition of Malononitrile to 2-Acyl Acrylates,” Tetrahedron Letters 33, no. 26 (1992): 3809–12.
  • A. Maleki, and V. Eskandarpour, “Design and Development of a New Functionalized Cellulose-Based Magnetic Nanocomposite: preparation, Characterization, and Catalytic Application in the Synthesis of Diverse Pyrano [2, 3-c] Pyrazole Derivatives,” Journal of the Iranian Chemical Society 16, no. 7 (2019): 1459–72.
  • Y. Peng, G. Song, and R. Dou, “Surface Cleaning under Combined Microwave and Ultrasound Irradiation: flash Synthesis of 4 H-Pyrano [2, 3-c] Pyrazoles in Aqueous Media,” Green Chemistry 8, no. 6 (2006): 573–5.
  • S. Talaiefar, S. M. Habibi-Khorassani, and M. Shaharaki, “Comprehensive Kinetics and a Mechanistic Investigation on the Biological Active Pyrano [2, 3-C] Pyrazole Core in the Presence of Both Eco-Friendly Catalyst and Solvent: Experimental Green Protocol,” Polycyclic Aromatic Compounds (2020): 1–24. doi: https://doi.org/10.1080/10406638.2020.1751667
  • R. Ramesh, V. Tamilselvi, P. Vadivel, and A. Lalitha, “Innovative Green Synthesis of 4-Aryl-Pyrazolo [5, 6] Pyrano [2, 3-d] Pyrimidines under Catalyst-Free Conditions,” Polycyclic Aromatic Compounds 40, no. 3 (2020): 811–23.
  • W. E. Kreighbaum, W. L. Matier, R. D. Dennis, J. L. Minielli, D. Deitchman, J. L. Perhach, and W. T. Comer, “Antihypertensive Indole Derivatives of Phenoxypropanolamines with. beta.-Adrenergic Receptor Antagonist and Vasodilating Activity,” Journal of Medicinal Chemistry 23, no. 3 (1980): 285–9.
  • M. Mishra, K. J. Jomon, V. S. Krishnan, and A. Nizam, “[18-C-6H 3 O+]: an in-Situ Generated Macrocyclic Complex and an Efficient, Novel Catalyst for Synthesis of Pyrano [2, 3-c] Pyrazole Derivatives,” Scientific Reports 10, no. 1 (2020): 1–6.
  • W. J. Houlihan, W. A. Remers and R. K. Brown, Indoles Part I (New York: Wiley, 1992).
  • T. Novinson, J. P. Miller, M. Scholten, R. K. Robins, L. N. Simon, D. E. O'Brien, and R. B. Meyer, “Adenosine Cyclic 3',5',-monophosphate phosphodiesterasr inhibitors. 2.3-Substituted 5,7-dialkylpyrazolo [1,5-a]pyrimidines,” Journal of Medicinal Chemistry 18, no. 5 (1975): 460–4.
  • K. Senga, T. Novinson, R. H. Springer, R. P. Rao, D. E. O'Brien, R. K. Robins, and H. R. Wilson, “Synthesis and Antitrichomonal Activity of Certain Pyrazolo (1,5-a) pyrimidines,” Journal of Medicinal Chemistry 18, no. 3 (1975): 312–4.
  • K. Wellinga, A. C. Grosscurt, and H. R. J. Van, “1-Phenylcarbamoyl-2-Pyrazolines: A New Class of Insecticides. 1. Synthesis and Insecticidal Properties of 3-Phenyl-1-Phenylcarbamoyl-2-Pyrazolines,” Journal of Agricultural and Food Chemistry 25, no. 5 (1977): 987–92.
  • A. C. Grosscurt, H. R. Van, and K. Wellinga, “1-Phenylcarbamoyl-2-Pyrazolines, a New Class of Insecticides. 3. Synthesis and Insecticidal Properties of 3, 4-Diphenyl-1-Phenylcarbamoyl-2-Pyrazolines,” Journal of Agricultural and Food Chemistry 27, no. 2 (1979): 406–9.
  • J. L. Wang, D. Liu, Z. J. Zhang, S. Shan, X. Han, S. M. Srinivasula, C. M. Croce, E. S. Alnemri, and Z. Huang, “Structure-Based Discovery of an Organic Compound That Binds Bcl-2 Protein and Induces Apoptosis of Tumor Cells,” Proceedings of the National Academy of Sciences of the United States of America 97, no. 13 (2000): 7124–9.
  • M. B. Hogale, and B. N. Pawar, “Synthesis and Biological Activity of 1‐Aroyl‐5‐(p‐Sulfamoylphenylazo)‐3, 4‐Dimethylpyrano (2, 3‐c) Pyrazol‐6 (1H)‐Ones,” ChemInform 21, no. 4 (1990): 73–74.
  • E. H. El-Tamany, F. A. El-Shahed, and B. H. Mohamed, “Synthesis and Biological Activity of Some Pyrazole Derivatives,” Journal of the Serbian Chemical Society 64, (1999): 9–19.
  • L. Emami, L. Zamani, R. Sabet, K. Zomorodian, Z. Rezaei, Z. Faghih, Y. Shahbazi, and S. Khabnadideh, “Molecular Docking and Antimicrobial Evaluation of Some Novel Pyrano [2, 3-C] Pyrazole Derivatives,” Trends in Pharmaceutical Sciences 6, (2020): 113–20.
  • M. E. A. Zaki, H. A. Soliman, O. A. Hiekal, and A. E. Rashad, “Pyrazolopyranopyrimidines as a Class of anti-Inflammatory Agents,” Zeitschrift Fur Naturforschung. C, Journal of Biosciences 61, no. 1–2 (2006): 1–5.
  • M. Kasiotis, E. N. Tzanetou, and S. A. Haroutounian, “Pyrazoles as Potential anti-Angiogenesis Agents: A Contemporary Overview,” Frontiers in Chemistry 2, (2014): 78.
  • Fathy M. Abdelrazek, Peter Metz, Olga Kataeva, Anne Jäger, and Sherif F. El-Mahrouky, “Synthesis and Molluscicidal Activity of New Chromene and pyrano[2,3-c]pyrazole derivatives,” Arch Pharm (Weinheim) 340, no. 10 (2007): 543–8.
  • E. M. Kassem, E. R. El-Sawy, H. I. Abd-Alla, A. H. Mandour, D. Abdel-Mogeed, and M. M. El-Safty, “Synthesis of Certain New Fused Pyranopyrazole and Pyranoimidazole Incorporated into 8-Hydroxyquinoline through a Sulfonyl Bridge at Position 5 with Evaluation of Their in-Vitro Antimicrobial and Antiviral Activities,” Egyptian Pharmaceutical Journal 11 (2012): 116.
  • A. H. Mandour, E. R. El-Sawy, M. S. Ebaid, and S. M. Hassan, “Synthesis and Potential Biological Activity of Some Novel 3-[(N-substituted indol-3-yl)methyleneamino]-6-amino-4-aryl-pyrano(2,3-c)pyrazole-5-carbonitriles and 3,6-diamino-4-(N-substituted indol-3-yl)pyrano(2,3-c)pyrazole-5-carbonitriles,” Acta Pharmaceutica (Zagreb, Croatia) 62, no. 1 (2012): 15–30.
  • N. Foloppe, L. M. Fisher, R. Howes, A. Potter, A. G. Robertson, and A. E. Surgenor, “Identification of Chemically Diverse Chk1 Inhibitors by Receptor-Based Virtual Screening,” Bioorganic & Medicinal Chemistry 14, no. 14 (2006): 4792–802.
  • S. Bhavanarushi, V. Kanakaiah, E. Yakaiah, V. Saddanapu, A. Addlagatta, and V. J. Rani, “Synthesis, Cytotoxic, and DNA Binding Studies of Novel Fluorinated Condensed Pyrano Pyrazoles,” Medicinal Chemistry Research 22, no. 5 (2013): 2446–54.
  • A. K. E. D. El-Ansary, A. T. Taher, A. A. E. H. El-Rahmany, and S. E. Awdan, “Synthesis, anti-Inflammatory, Analgesic and Antipyretic Activities of Novel Pyrano [2, 3-c] Pyrazoles and Related Fused Ring Derivatives,” Journal of American Science 10, (2014): 284–294.
  • Y. Zou, Y. Hu, H. Liu, and S. Daqing, “Rapid and Efficient ultrasound-assisted method for the combinatorial synthesis of spiro[indoline-3,4'-pyrano[2,3-c]pyrazole] derivatives,” ACS Combinatorial Science 14 no. 1 (2012): 38–43.
  • G. Brahmachari, and B. Banerjee, “Facile and Chemically Sustainable One-Pot Synthesis of a Wide Array of Fused O- and N-Heterocycles Catalyzed by Trisodium Citrate Dihydrate under Ambient Conditions,” Asian Journal of Organic Chemistry 5, no. 2 (2016): 271–86.
  • S. Sharma, G. Brahmachari, V. K. Gupta, “X-Ray Crystal Structure Analysis of Novel 6-Amino-3-Phenyl-4-(Pyridin-4-yl)-2,4-Dihydropyrano[2,3-c] Pyrazole-5-Carbonitrile,” Crystallography Report 65, no. 7 (2020): 1202–1207.
  • A. D. Becke, “Density-Functional Thermochemistry. III. The Role of Exact Exchange,” The Journal of Chemical Physics 98, no. 7 (1993): 5648–52.
  • C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Review. B, Condensed Matter 37, no. 2 (1988): 785–9.
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, Li. X, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, (Wallingford, CT: Gaussian, Inc., 2009).
  • R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, “Self-Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions,” The Journal of Chemical Physics 72, no. 1 (1980): 650–4.
  • J. P. Merrick, D. Moran, and L. Radom, “An Evaluation of Harmonic Vibrational Frequency Scale Factors,” The Journal of Physical Chemistry. A 111, no. 45 (2007): 11683–700.
  • Peter Pulay, Geza Fogarasi, Gabor Pongor, James E. Boggs, and Anna Vargha, “Combination of Theoretical ab Initio and Experimental Information to Obtain Reliable Harmonic Force Constants. Scaled Quantum Mechanical (QM) Force Fields for Glyoxal, Acrolein, Butadiene, Formaldehyde, and Ethylene,” Journal of the American Chemical Society 105, no. 24 (1983): 7037–47.
  • E. Frisch, H P Hratchian, R D Dennington, T A Keith, J Milliam, A B Nielson, A J Holder and J Hiscocks, Gaussian Inc Gaussian version 5.0 (2009).
  • M. H. Jamroz, “Vibrational energy distribution analysis: VEDA 4” (2004).
  • A. Kumar, A. Dwivedi, A. K. Srivastava, N. Misra, B. Narayana, S. Samshuddin, and B. K. Sarojini, “Molecular Structures, Vibrational Spectra, Electronic Properties, and Molecular Docking of Two Pyrazoline Derivatives Containing 1-Carboxamide and 1-Carbothioamide: A Comparative Study,” Polycyclic Aromatic Compounds 37, no. 4 (2017): 267–79.
  • A. Dwivedi, and A. Kumar, “Molecular Docking and Comparative Vibrational Spectroscopic Analysis, HOMO-LUMO, Polarizabilities, and Hyperpolarizabilities of N-(4-Bromophenyl)-4-Nitrobenzamide by Different DFT (B3LYP, B3PW91, and MPW1PW91) Methods,” Polycyclic Aromatic Compounds (2019). doi: https://doi.org/10.1080/10406638.2019.1591466
  • A. Kumar, A. K. Srivastava, S. Gangwar, N. Misra, A. Mondal, and G. Brahmachari, “Combined Experimental (FT-IR, UV–Visible Spectra, NMR) and Theoretical Studies on the Molecular Structure, Vibrational Spectra, HOMO, LUMO, MESP Surfaces, Reactivity Descriptor and Molecular Docking of Phomarin,” Journal of Molecular Structure 1096 (2015): 94–101.
  • A. K. Srivastava, V. Baboo, B. Narayana, B. K. Sarojini, and N. Misra, “Comparative DFT Study on Reactivity, Acidity and Vibrational Spectra of Halogen Substituted Phenylacetic Acids,” Indian Journal of Pure & Applied Physics 52 (2014): 507–19.
  • A. Kumar, A. K. Srivastava, S. Gangwar, N. Misra, G. Brahmachari, A. Mondal, and S. Mondal, “FT-IR, UV–Visible, and NMR Spectral Analyses, Molecular Structure, and Properties of Nevadensin Revealed by Density Functional Theory and Molecular Docking,” Polycyclic Aromatic Compounds 40, no. 2 (2020): 540–52.
  • P. M. Sawant, D. O. Mountfort, and D. S. Kerr, “Spectral Analysis of Electrocorticographic Activity during Pharmacological Preconditioning and Seizure Induction by Intrahippocampal Domoic Acid,” Hippocampus 20, no. 8 (2010): 994–1002.
  • Michael Barfield, and Paul Fagerness, “Density Functional Theory/GIAO Studies of the 13C, 15N, and 1H NMR Chemical Shifts in Aminopyrimidines and Aminobenzenes: Relationships to Electron Densities and Amine Group Orientations,” Journal of the American Chemical Society 119, no. 37 (1997): 8699–711.
  • J. M. Manaj, D. Maciewska, and I. Waver, “1H, 13C and 15N NMR and GIAO CPHF Calculations on Two Quinoacridinium Salts,” Magnetic Resonance in Chemistry 38 (2000): 482–5.
  • H. O. Kalinowski, S. Berger and S. Braun, Carbon-13 NMR Spectroscopy (Chichester: John Wiley & Sons, 1988), 512.
  • P. S. Kalsi, Spectroscopy of Organic Compound (USA: New Age International, 2004).
  • M. J. Alam, and S. Ahmad, “Quantum Chemical and Spectroscopic Investigations of 3-Methyladenine,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 128 (2014): 653–64.
  • C. J. Cramer, Essentials of Computational Chemistry (London: John Wiley and Sons, 2004), 596.
  • I. N. Levine, Many‐Electron Atoms. Quantum Chemistry (New Jersey: Prentice‐Hall Inc, 2000), 739.
  • C. C. Ersanl, G. K. Kantar, and S. Saşmaz, “Crystallographic, Spectroscopic (FTIR and NMR) and Quantum Computational Calculation Studies on Bis (2-Methoxy-4-((E)-Prop-1-Enyl) Phenyl) Oxalate,” Journal of Molecular Structure 1143, (2017): 318–27.
  • A. E. Reed, L. A. Curtiss, and F. Weinhold, “Intermolecular Interactions from a Natural Bond Orbital, Donor‐Acceptor Viewpoint,” Chemical Reviews 88 no. 6 (1988): 899–926.
  • E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, and F. Weinhold, NBO 3.1 Program, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 1996.
  • M. Haroon, M. Khalid, T. Akhtar, M. N. Tahir, M. U. Khan, M. Saleem, and R. Jawaria, “Synthesis, Spectroscopic, SC-XRD Characterizations and DFT Based Studies of ethyl2-(Substituted-(2-Benzylidenehydrazinyl)) Thiazole-4-Carboxylate Derivatives,” Journal of Molecular Structure 1187 (2019): 164–71.
  • S. Sharma, G. Brahmachari, B. Banerjee, K. Nurjamal, A. Kumar, A. K. Srivastava, N. Misra, S. K. Pandey, Rajnikant, and V. K. Gupta, “Synthesis, Spectroscopic Characterization and Crystallographic Behavior of a Biologically Relevant Novel Indole-Fused Heterocyclic compound- Experimental and Theoretical (DFT) Studies,” Journal of Molecular Structure 1118 (2016): 344–55.
  • A. Grosdidier, V. Zoete, and O. Michielin, “SwissDock, a Protein-Small Molecule Docking Web Service Based on EADock DSS,” Nucleic Acids Research 39 (2011): W270–W277.
  • D. Gfeller, O. Michielin, and V. Zoete, “Shaping the Interaction Landscape of Bioactive Molecules,” Bioinformatics (Oxford, England) 29, no. 23 (2013): 3073–9.
  • http://www.rcsb.org/pdb/explore.do?structureId=2ap2
  • http://www.rcsb.org/pdb/explore.do?structureId=3CMP

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.