198
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, Antibacterial Activity and Molecular Docking Study of a Series of 1,3-Oxazole-Quinoxaline Amine Hybrids

, , &
Pages 2378-2391 | Received 22 May 2020, Accepted 02 Oct 2020, Published online: 27 Oct 2020

References

  • (a) G. Zeni, R.C. Larock, “Synthesis of Heterocycles via Palladium π-Olefin and π-Alkyne Chemistry,” Chemical Reviews, 106, no. 11 (2006) 2285–310. (b) G. Zeni, R.C. Larock, “Synthesis of Heterocycles via Palladium-Catalyzed Oxidative Addition,” Chemical Reviews 106 (2006) 4644–80.
  • (a) E.-I. Negishi and L. Anastasia, “Palladium-Catalyzed Alkynylation,” Angewandte Chemie International Edition, 44, no. 29 (2005) 1979–2018. (b) K. Nicolaou, P.G. Bulger, D. Sarlah, “Palladium‐Catalyzed Cross‐Coupling Reactions in Total Synthesis,” Angewandte Chemie International Edition 44 (2005) 4442–89.
  • K. Sonogashira, “Development of Pd–Cu Catalyzed Cross-Coupling of Terminal Acetylenes with sp2-Carbon Halides,” Journal of Organometallic Chemistry, 653, no. 1–2 (2002) 46–9.
  • (a) F. Mitzel, S. FitzGerald, A. Beeby and R. Faust, “The Synthesis of Arylalkyne‐Substituted Tetrapyrazinoporphyrazines and an Evaluation of Their Potential as Photosensitisers for Photodynamic Therapy,” European Journal of Organic Chemistry (2004) 1136–42. (b) D. Falcone, J. Li, A. Kale, G.B. Jones, “Photoactivated Enediynes as Targeted Antitumoral Agents: Efficient Routes to Antibody and Gold Nanoparticle Conjugates,” Bioorganic & Medicinal Chemistry Letters 18 (2008) 934–7.
  • J. Boukouvalas, S. Cote, and B. Ndzi, “Facile Access to 4-(1-Alkynyl)-2 (5H)-Furanones by Sonogashira Coupling of Terminal Acetylenes with β-Tetronic Acid Bromide: Efficient Synthesis of Cleviolide,” Tetrahedron Letters 48, no. 1 (2007): 105–7.
  • (a) H. Shimizu, K. Fujimoto, M. Furusyo, H. Maeda, Y. Nanai, K. Mizuno, M. Inouye, “Highly Emissive π-Conjugated Alkynylpyrene Oligomers: Their Synthesis and Photophysical Properties,” The Journal of Organic Chemistry 72, no. 4 (2007) 1530–3. (b) J.H. Moon, W. McDaniel, P. MacLean, L.F. Hancock, “Live‐Cell‐Permeable Poly (p‐Phenylene Ethynylene),” Angewandte Chemie International Edition 46 (2007) 8223–5.
  • (a) J.-C. Hierso, A. Fihri, R. Amardeil, P. Meunier, H. Doucet, M. Santelli, V.V. Ivanov, “Catalytic Efficiency of a New Tridentate Ferrocenyl Phosphine Auxiliary: Sonogashira Cross-Coupling Reactions of Alkynes with Aryl Bromides and Chlorides at Low Catalyst Loadings of 10-1 to 10-4 Mol%,” Organic Letters 6, no. 20 (2004) 3473–6. (b) G. Adjabeng, T. Brenstrum, C.S. Frampton, A.J. Robertson, J. Hillhouse, J. McNulty, A. Capretta, “Palladium Complexes of 1,3,5,7-Tetramethyl-2,4,8-Trioxa-6-Phenyl-6-Phosphaadamantane: Synthesis, Crystal Structure and Use in the Suzuki and Sonogashira Reactions and the α-Arylation of Ketones,” The Journal of Organic Chemistry 69 (2004) 5082–6.
  • C. Glaser, “Beiträge Zur Kenntniss Des Acetenylbenzols,” Berichte Der Deutschen Chemischen Gesellschaft 2, no. 1 (1869): 422–4.
  • H. Zhong, J. Wang, L. Li, and R. Wang, “The Copper-Free Sonogashira Cross-Coupling Reaction Promoted by Palladium Complexes of Nitrogen-Containing Chelating Ligands in Neat Water at Room Temperature,” Dalton Transactions (Cambridge, England: 2003) 43, no. 5 (2014): 2098–103.
  • M. Gazvoda, M. Virant, B. Pinter, and J. Košmrlj, “Mechanism of Copper-Free Sonogashira Reaction Operates through Palladium-Palladium Transmetallation,” Nature Communications 9, no. 1 (2018): 4814.
  • (a) V.S.C. Yeh, “Recent Advances in the Total Syntheses of Oxazole-Containing Natural Products,” Tetrahedron 52 (2004) 11995–2042. (b) I.J. Turchi, M.J. Dewar, “Chemistry of Oxazoles,” Chemical Reviews 75 (1975) 389–437.
  • H. Wasserman, K. McCarthy, and K. Prowse, “Oxazoles in Carboxylate Protection and Activation,” Chemical Reviews 86, no. 5 (1986): 845–56.
  • S. R. Shah, S. S. Navathe, A. G. Dikundwar, T. N. Guru Row, and A. T. Vasella, “Thermal Rearrangement of Azido Ketones into Oxazoles via Azirines: One-Pot, Metal-Free Heteroannulation to Functionalized 1,3-Oxazoles,” European Journal of Organic Chemistry 2013, no. 2 (2013): 264–7.
  • J. Wang, Y. Cheng, J. Xiang, and A. Wu, “Synthesis of 2,5-Disubstituted Oxazoles from Arylacetylenes and α-Amino Acids through an I2/Cu(NO3)2•3H2O-Assisted Domino Sequence,” Organic Letters 30, no. 06 (2019): 743–7.
  • H. An, S. Mai, Q. Xuan, Y. Zhou, and Q. Song, “Gold-Catalyzed Radical-Involved Intramolecular Cyclization of Internal N-Propargylamides for the Construction of 5-Oxazole Ketones,” The Journal of Organic Chemistry 84, no. 1 (2019): 401–8.
  • C. A. Zificsak, and D. J. Hlasta, “Current Methods for the Synthesis of 2-Substituted Azoles,” Tetrahedron 60, no. 41 (2004): 8991–9016.
  • S. Bailey, P. S. Humphries, D. J. Skalitzky, W. G. Su, and L. R. Zehnder, WO 2004/092145, Chem. Abstr 141 (2004) 379637.
  • S. Stachel, D.V. Paone, J. Li, K. Nanda, US Patent 20150099719, Chem. Abstr. 162 (2015) 527409.
  • C.L. Murray, M.D. Orr, R.A. Noe, J.M. Sligar, UK Patent 2465890, Chem. Abstr, 153 (2010) 37155.
  • M. Kamiya, M. Sonoda, and S. Tanimori, “A Rapid Access to Substituted Oxazoles via PIFA-Mediated Oxidative Cyclization of Enamides,” Tetrahedron 73, no. 9 (2017): 1247–54.
  • S. D. Undevia, F. Innocenti, J. Ramirez, L. House, A. A. Desai, L. A. Skoog, D. A. Singh, T. Karrison, H. L. Kindler, and M. J. Ratain, “A Phase I and Pharmacokinetic Study of the Quinoxaline Antitumour Agent R(+)XK469 in Patients with Advanced Solid Tumours,” European Journal of Cancer (Oxford, England: 1990) 44, no. 12 (2008): 1684–92.
  • S. Wagle, A. V. Adhikari, and N. S. Kumari, “Synthesis of Some New 4-Styryltetrazolo[1,5-a]Quinoxaline and 1-Substituted-4-Styryl[1,2,4]Triazolo[4,3-a]Quinoxaline Derivatives as Potent Anticonvulsants,” European Journal of Medicinal Chemistry 44, no. 3 (2009): 1135–43.
  • E. Vicente, L. M. Lima, E. Bongard, S. Charnaud, R. Villar, B. Solano, A. Burguete, S. Perez-Silanes, I. Aldana, L. Vivas, et al. “Synthesis and Structure-Activity Relationship of 3-Phenylquinoxaline 1,4-di-N-Oxide Derivatives as Antimalarial Agents,” European Journal of Medicinal Chemistry 43, no. 9 (2008): 1903–10.
  • A. Budakoti, A. R. Bhat, and A. Azam, “Synthesis of New 2-(5-Substituted-3-Phenyl-2-Pyrazolinyl)-1,3-Thiazolino[5,4-b]Quinoxaline Derivatives and Evaluation of Their Antiamoebic Activity,” European Journal of Medicinal Chemistry 44, no. 3 (2009): 1317–25.
  • 22 Y. B. Kim, Y. H. Kim, J. Y. Park, and S. K. Kim, “Synthesis and Biological Activity of New Quinoxaline Antibiotics of Echinomycin Analogues,” Bioorganic & Medicinal Chemistry Letters 14, no. 2 (2004): 541–4.
  • J. Y. Jaung, “Synthesis and Halochromism of New Quinoxaline Fluorescent Dyes,” Dyes and Pigments 71, no. 3 (2006): 245–50.
  • K. R. J. Thomas, M. Velusamy, T. Lin Jiann, C. H. Chuen, and Y. T. Tao, “Chromophore-Labeled Quinoxaline Derivatives as Efficient Electroluminescent Materials,” Chemistry of Materials 17, no. 7 (2005): 1860–6.
  • S. Dailey, W. J. Feast, R. J. Peace, I. C. Sage, S. Till, and E. L. Wood, “Synthesis and Device Characterisation of Side-Chain Polymer Electron Transport Materials for Organic Semiconductor Applications,” Journal of Materials Chemistry 11, no. 9 (2001): 2238–43.
  • A. Katoh, T. Yoshida, and J. Ohkanda, “Synthesis of Quinoxaline Derivatives Bearing the Styryl and Phenylethynyl Groups and Application to a Fluorescence Derivatization Reagent,” Heterocycles 52, no. 2 (2000): 911–20.
  • C. R. Bourne, “Utility of the Biosynthetic Folate Pathway for Targets in Antimicrobial Discovery,”Antibiotics (Basel, Switzerland) 3, no. 1 (2014): 1–28.
  • (a) A. Keivanloo, A. Soozani, M. Bakherad, A.H. Amin, “A One-Pot Synthetic Approach for the Construction of a Thiazolo [3, 2-a] Benzimidazole-Linked Quinazoline Scaffold via Palladium-Catalyzed Reactions,” Organic Chemistry Frontiers 5, no. 7 (2018) 1135–42. (b) A. Keivanloo, T. Besharati-Seidani, B. Kaboudin, A. Yoshida, T. Yokomatsu, “One-Pot Synthesis of Biologically Active 1,2,3-Trisubstituted Pyrrolo [2,3-b] Quinoxalines through a Palladium-Catalyzed Reaction with Internal Alkyne Moieties,” Molecular Diversity 22 (2018) 879–91. (c) A. Keivanloo, A. Soozani, M. Bakherad, M. Mirzaee, H.A. Rudbari, G. Bruno, “Development of an Unexpected Reaction Pathway for the Synthesis of 1,2,4-Trisubstituted Pyrrolo [1,2-a] Quinoxalines through Palladium-Catalyzed Cascade Reactions,” Tetrahedron 73 (2017) 1633–9. (d) S.S. Kazemi, A. Keivanloo, H. Nasr-Isfahani, A. Bamoniri, “Synthesis of Novel 1,5-Disubstituted Pyrrolo [1,2-a] Quinazolines and Their Evaluation for Anti-Bacterial and Anti-Oxidant Activities,” RSC Advances 6 (2016) 92663–9. (e) A. Keivanloo, S.S. Kazemi, H. Nasr-Isfahani, A. Bamoniri, “Novel Multi-Component Synthesis of 1, 4-Disubstituted Pyrrolo [1, 2-a] Quinoxalines through Palladium-Catalyzed Coupling Reaction/Hetero-Annulation in Water,” Tetrahedron 72 (2016) 6536–42. (f) A. Keivanloo, M. Fakharian, M.R. Nabid, A.H. Amin, “Novel One-Pot Synthesis of 1-Alkyl-2-(Aryloxy) Methyl-1H-Pyrrolo [2, 3-b] Quinoxalines via Copper-Free Sonogashira Coupling Reaction,” Journal of the Iranian Chemical Society 16 (2019) 151–60.
  • A. Keivanloo, S. Abbaspour, M. Bakherad, and B. Notash, “New Pd‐Mediated Cascade Reactions for Synthesis of Novel Functionalized 1,3‐Oxazole‐Linked Quinoxaline Amines,”ChemistrySelect 4, no. 4 (2019): 1366–70.
  • (a) T. Besharati-Seidani, A. Keivanloo, B. Kaboudin and T. Yokomatsu, “Efficient Synthesis of 2-Phenyl-3-Substituted Furo/Thieno [2,3-b] Quinoxalines via Sonogashira Coupling Reaction Followed by Iodocyclization and Subsequent Palladium-Catalyzed Cross-Coupling Reactions,” Molecular Diversity 21, no. 1 (2017): 83901–8. (b) A. Keivanloo, S.S. Kazemi, H. Nasr-Isfahani and A. Bamoniri, “Efficient One-Pot Synthesis of New 1-Amino Substituted Pyrrolo [1,2-a] Quinoline-4-Carboxylate Esters via Copper-Free Sonogashira Coupling Reactions,” Molecular Diversity 21 (2017) 29–36.
  • M. Fakharian, A. Keivanloo, and M. R. Nabid, “Using Calcium Carbide as an Acetylene Source for Cascade Synthesis of Pyrrolo[2,3‐b]Quinoxalines via Copper‐Free Sonogashira Coupling Reaction,” Helvetica Chimica Acta 101, no. 4 (2018): e1800004.
  • M. A. Z. El-Attar, R. Y. Elbayaa, O. G. Shaaban, N. S. Habib, A. E. Abdel Wahab, I. A. Abdelwahab, and S. A. M. El-Hawash, “Design, Synthesis, Antibacterial Evaluation and Molecular Docking Studies of Some New Quinoxaline Derivatives Targeting Dihyropteroate Synthase Enzyme,” Bioorganic Chemistry 76 (2018): 437–48.
  • Y. Zhao, W. R. Shadrick, M. J. Wallace, Y. Wu, E. C. Griffith, J. Qi, M.-K. Yun, S. W. White, and R. E. Lee, “Pterin–Sulfa Conjugates as Dihydropteroate Synthase Inhibitors and Antibacterial Agents,” Bioorganic & Medicinal Chemistry Letters 26, no. 16 (2016): 3950–4.
  • S. Sepehri, L. Saghaie, and A. Fassihi, “Anti-HIV-1 Activity Prediction of Novel Gp41 Inhibitors Using Structure-Based Virtual Screening and Molecular Dynamics Simulation,” Molecular Informatics 36, no. 3 (2017): 1600060.
  • G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, and A. J. Olson, “Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function,” Journal of Computational Chemistry 19, no. 14 (1998): 1639–62.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.