225
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Design, Synthesis, Molecular Docking of Novel Substituted Pyrimidinone Derivatives as Anticancer Agents

ORCID Icon, &
Pages 2538-2554 | Received 25 May 2020, Accepted 13 Oct 2020, Published online: 29 Oct 2020

References

  • J. L. Counihan, E. A. Grossman, and D. K. Nomura, “Cancer Metabolism: Current Understanding and Therapies,” Chemical Reviews 118, no. 14 (2018): 6893–923.
  • H. M. Coley. “Overcoming Multidrug Resistance in Cancer: Clinical Studies of p-Glycoprotein Inhibitors,” in Multi-drug Resistance in Cancer (New York: Springer; 2010), 341–358. doi:https://doi.org/10.1007/978-1-60761-416-6_15
  • M. S. Mohamed, S. M. Awad, Y. M. Zohny, and Z. M. Mohamed, “New Theopyrimidine Derivatives of Expected Antiinflammatory Activity,” Pharmacophore 3 (2012): 62–75.
  • S. Nag, R. Pathak, M. Kumar, P. Shukla, and S. Batra, “Synthesis and Antibacterial Evaluation of Ureides of Baylis-Hillman Derivatives,” Bioorganic & Medicinal Chemistry Letters 16, no. 14 (2006): 3824–8.
  • S. Czernecki and A. Ezzitouni, “Synthesis of Various 3'-Branched 2',3'-Unsaturated Pyrimidine Nucleosides as Potential anti-HIV Agents,” The Journal of Organic Chemistry 57, no. 26 (1992): 7325–8.
  • T. Gazivoda, S. Raić-Malić, V. Kristafor, D. Makuc, J. Plavec, S. Bratulić, S. Kraljević-Pavelić, K. Pavelić, L. Naesens, G. Andrei, et al. “Synthesis, Cytostatic and anti-HIV Evaluations of the New Unsaturated Acyclic C-5 Pyrimidine Nucleoside Analogues,” Bioorganic & Medicinal Chemistry 16, no. 10 (2008): 5624–34.
  • D. Kumar, S. I. Khan, B. L. Tekwani, P. Ponnan, and D. S. Rawat, “4-Aminoquinoline-Pyrimidine Hybrids: Synthesis, Antimalarial Activity, Heme Binding and Docking Studies,” European Journal of Medicinal Chemistry 89 (2015): 490–502.
  • A. Agarwal, K. Srivastava, S. Puri, and P. M. Chauhan, “Synthesis of Substituted Indole Derivatives as a New Class of Antimalarial Agents,” Bioorganic & Medicinal Chemistry Letters 15, no. 12 (2005): 3133–6.
  • N. Desai, G. Kotadiya, and A. Trivedi, “Studies on Molecular Properties Prediction, Antitubercular and Antimicrobial Activities of Novel Quinoline Based Pyrimidine Motifs,” Bioorganic & Medicinal Chemistry Letters 24, no. 14 (2014): 3126–30.
  • N. R. Kamdar, D. D. Haveliwala, P. T. Mistry, and S. K. Patel, “Synthesis and Evaluation of in Vitro Antitubercular Activity and Antimicrobial Activity of Some Novel 4H-Chromeno[2,3-d]Pyrimidine via 2-Amino-4-Phenyl-4H-Chromene-3-Carbonitriles,” Medicinal Chemistry Research 20, no. 7 (2011): 854–64.
  • A. Holý, J. Günter, H. Dvoráková, M. Masojídková, G. Andrei, R. Snoeck, J. Balzarini, and E. De Clercq, “Structure-Antiviral Activity Relationship in the Series of Pyrimidine and Purine N-[2-(2-Phosphonomethoxy)Ethyl] Nucleotide Analogues. 1. Derivatives Substituted at the Carbon Atoms of the Base,” Journal of Medicinal Chemistry 42, no. 12 (1999): 2064–86.
  • I. Ukrainets, I. Tugaibei, N. Bereznyakova, V. Kravchenko, and A. Turov, “4-Hydroxy-2-Quinolones 144. Alkyl-, Arylalkyl-, and Arylamides of 2-Hydroxy-4-Oxo-4H-Pyrido[1,2-a]Pyrimidine-3-Carboxylic Acid and Their Diuretic Properties,” Chemistry of Heterocyclic Compounds 44, no. 5 (2008): 565–75.
  • M. A. Abdelgawad, R. B. Bakr, and A. A. Azouz, “Novel Pyrimidine-Pyridine Hybrids: Synthesis, Cyclooxygenase Inhibition, anti-Inflammatory Activity and Ulcerogenic Liability,” Bioorganic Chemistry 77 (2018): 339–48.
  • R. B. Bakr, A. A. Azouz, and K. R. Abdellatif, “Synthesis, Cyclooxygenase Inhibition, anti-Inflammatory Evaluation and Ulcerogenic Liability of New 1-Phenylpyrazolo[3,4-d]Pyrimidine Derivatives,” Journal of Enzyme Inhibition and Medicinal Chemistry 31, no. sup2 (2016): 6–12.
  • D. Erlinge and G. Burnstock, “P2 Receptors in Cardiovascular Regulation and Disease,” Purinergic Signalling 4, no. 1 (2008): 1–20. https://doi.org/10.1007/s11302-007-9078-7
  • A. Dobolyi, G. Juhász, Z. Kovács, and J. Kardos, “Uridine Function in the Central Nervous System,” Current Topics in Medicinal Chemistry 11, no. 8 (2011): 1058–67. doi. https://doi.org/10.2174/156802611795347618
  • A. A. Ghoneim, N. A. Elkanzi, and R. B. Bakr, “Synthesis and Studies Molecular Docking of Some New Thioxobenzo[g]Pteridine Derivatives and 1,4-Dihydroquinoxaline Derivatives with Glycosidic Moiety,” Journal of Taibah University for Science 12, no. 6 (2018): 774–82.
  • A. A. Ghoneim and M. G. Assy, “Synthesis of Some New Hydroquinoline and Pyrimido[4,5-b] Quinoline Derivatives,” Current Research in Chemistry 7, no. 1 (2015): 14–20.
  • M. F. A. Mohamed, B. G. M. Youssif, M. Sh A. Shaykoon, M. H. Abdelrahman, B. E. M. Elsadek, A. S. Aboraia, and G. E.-D. A. Abuo-Rahma, “Utilization of Tetrahydrobenzo[4,5]Thieno[2,3-d]Pyrimidinone as a Cap Moiety in Design of Novel Histone Deacetylase Inhibitors,” Bioorganic Chemistry 91 (2019): 103127. https://doi.org/10.1016/j.bioorg.2019.103127
  • D. Kumar, S. Sundaree, E. O. Johnson, and K. Shah, “An Efficient Synthesis and Biological Study of Novel Indolyl-1,3,4-Oxadiazoles as Potent Anticancer Agents,” Bioorganic and Medicinal Chemistry Letters 19, no. 15 (2009): 4492–4.
  • M. Rashid, A. Husain, and R. Mishra, “Synthesis of Benzimidazoles Bearing Oxadiazole Nucleus as Anticancer Agents,” European Journal of Medicinal Chemistry 54 (2012): 855–66.
  • D. Havrylyuk, L. Mosula, B. Zimenkovsky, O. Vasylenko, A. Gzella, and R. Lesyk, “Synthesis and Anticancer Activity Evaluation of 4-Thiazolidinones Containing Benzothiazole Moiety,” European Journal of Medicinal Chemistry 45, no. 11 (2010): 5012–21. doi. https://doi.org/10.1016/j.ejmech.2010.08.008
  • D. Kaminskyy, B. Bednarczyk-Cwynar, O. Vasylenko, O. Kazakova, B. Zimenkovsky, L. Zaprutko, and R. Lesyk, “Synthesis of New Potential Anticancer Agents Based on 4-Thiazolidinone and Oleanane Scaffolds,” Medicinal Chemistry Research 21, no. 11 (2012): 3568–80.
  • M. A. Abdelgawad, R. B. Bakr, and H. A. Omar, “Design, Synthesis and Biological Evaluation of Some Novel Benzothiazole/Benzoxazole and/or Benzimidazole Derivatives Incorporating a Pyrazole Scaffold as Antiproliferative Agents,” Bioorganic Chemistry 74 (2017): 82–90.
  • A. A. Ghoneim and A. F. El-Farargy, “Synthesis and Antimicrobial Evaluation of New Glucosylimino Thiazole Derivatives,” Journal of the Iranian Chemical Society 16, no. 7 (2019): 1391–9. doi 10.1007%2Fs13738-019-01617-2
  • A. Aliabadi, “1,3,4-Thiadiazole Based Anticancer Agents,” Anti-Cancer Agents in Medicinal Chemistry 16, no. 10 (2016): 1301–14.
  • D. Kumar, N. M. Kumar, K.-H. Chang, and K. Shah, “Synthesis and Anticancer Activity of 5-(3-Indolyl)-1,3,4-Thiadiazoles,” European Journal of Medicinal Chemistry 45, no. 10 (2010): 4664–8.
  • K. Sztanke, T. Tuzimski, J. Rzymowska, K. Pasternak, and M. Kandefer-Szerszeń, “Synthesis, Determination of the Lipophilicity, Anticancer and Antimicrobial Properties of Some Fused 1,2,4-Triazole Derivatives,” European Journal of Medicinal Chemistry 43, no. 2 (2008): 404–19.
  • P. Singh, R. Raj, V. Kumar, M. P. Mahajan, P. M. S. Bedi, T. Kaur, and A. K. Saxena, “1,2,3-Triazole Tethered β-lactam-Chalcone Bifunctional Hybrids: Synthesis and Anticancer Evaluation,” European Journal of Medicinal Chemistry 47 (2012): 594–600.
  • A. A. Ghoneim, N. A. A. Elkanzi, and R. B. Bakr, “Synthesis and studies molecular docking of some new thioxobenzo[g]pteridine derivatives and 1,4-dihydroquinoxaline derivatives with glycosidic moiety,” Journal of Taibah University for Science 12 (2018): 774–782. doi: https://doi.org/10.1080/16583655.2018.1510163
  • R. B. Bakr, A. A. Ghoneim, and A. A. Azouz, “Selective Cyclooxygenase Inhibition and Ulcerogenic Liability of Some Newly Prepared anti-Inflammatory Agents Having Thiazolo[4,5-d]Pyrimidine Scaffold,” Bioorganic Chemistry 88 (2019): 102964.
  • N. A. Elkanzi, R. B. Bakr, and A. A. Ghoneim, “Design, Synthesis, Molecular Modeling Study, and Antimicrobial Activity of Some Novel Pyrano[2,3-b]pyridine and Pyrrolo[2,3-b]pyrano[2.3-d]pyridine Derivatives,” Journal of Heterocyclic Chemistry 56 (2019): 406–416.
  • A. A. Ghoneim, A. F. El-Farargy, and N. A. A. Elkanzi, “Synthesis of Some Novel Phenylfuro[3,2-d]Pyrimidine Glycosides Derivatives with Expected Antimicrobial Activity,” Journal of the Iranian Chemical Society 17, no. 2 (2020): 319–25.
  • M. A. Abdelgawad, R. B. Bakr, W. Ahmad, M. M. Al-Sanea, and H. A. Elshemy, “New Pyrimidine-Benzoxazole/Benzimidazole Hybrids: Synthesis, Antioxidant, Cytotoxic Activity, In vitro Cyclooxygenase and Phospholipase A2-V Inhibition,” Bioorganic Chemistry 92 (2019): 103218.
  • S. Tumtin, I. Phucho, A. Nongpiur, R. Nongrum, J. Vishwakarma, and B. Myrboh, “One pot synthesis of [1,3]‐oxazine and [1,3]‐thiazine derivatives under thermal and microwave conditions,” Journal of Heterocyclic Chemistry 47 (2010): 125. doi. https://doi.org/10.1002/jhet.280
  • P. B. Piste and M. S. Kanase, “Green techniques in synthesis of some thiazolidinones,” 3 (2014): 668.
  • G. Repetto, A. Del Peso, and J. L. Zurita, “Neutral Red Uptake Assay for the Estimation of Cell Viability/Cytotoxicity,” Nature Protocols 3, no. 7 (2008): 1125–31.
  • http://www.rcsb.org/pdb-

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.