271
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Ultrasound-Mediated Green Synthesis of Novel Functionalized Benzothiazole[3,2-a]Pyrimidine Derivatives through a Multicomponent Reaction

, , & ORCID Icon
Pages 3348-3360 | Received 21 Jul 2020, Accepted 01 Dec 2020, Published online: 04 Jan 2021

References

  • B. Banerjee, “Recent Developments on Ultrasound-Assisted One-Pot Multicomponent Synthesis of Biologically Relevant Heterocycles,” Ultrasonics Sonochemistry 35, no. Pt A (2017): 15–35.
  • N. G. Shabalala, N. Kerru, S. Maddila, W. E. van Zyl, and S. B. Jonnalagadda, “Catalyst-Free Synthesis of Novel Isopropyl 2-Amino-7,7-Dimethyl-4-(Aryl)-5-Oxo-5,6,7,8-Tetrahydro-4H-Chromene-3-Carboxylate Derivatives in Aqueous Ethanol under Ultrasound Irradiation,” Chemical Data Collections 26 (2020): 100365.
  • N. Kerru, L. Gummidi, S. N. Maddila, S. V. H. S. Bhaskaruni, and S. B. Jonnalagadda, “Ultrasound-Assisted Synthesis and Antibacterial Activity of Novel 1,3,4-Thiadiazole-1H-Pyrazol-4-yl-Thiazolidin-4-One Derivatives,” Monatshefte Für Chemie - Chemical Monthly 151, no. 6 (2020): 981–90.
  • M. Ashokkumar, “The Characterization of Acoustic Cavitation Bubbles - An Overview,” Ultrasonics Sonochemistry 18, no. 4 (2011): 864–72.
  • N. G. Shabalala, N. Kerru, S. Maddila, W. E. van Zyl, and S. B. Jonnalagadda, “Facile One-Pot Green Synthesis of 2-Amino-4H-Benzo[g]Chromenes in Aqueous Ethanol under Ultrasound Irradiation,” Synthetic Communications 50, no. 13 (2020): 1960–71.
  • B. Banerjee, “Recent Developments on Ultrasound Assisted Catalyst-Free Organic Synthesis,” Ultrasonics Sonochemistry 35, no. Pt A (2017): 1–14.
  • D. P. Gouvea, V. D. O. Bareno, J. Bosenbecker, B. B. Drawanz, P. D. Neuenfeldt, G. M. Siqueira, and W. Cunico, “Ultrasonics Promoted Synthesis of Thiazolidinones from 2-Aminopyridine and 2-Picolilamine,” Ultrasonics Sonochemistry 19, no. 6 (2012): 1127–31.
  • C. E. R. Santos, and A. Echevarria, “Convenient Syntheses of Pyrazolo[3,4-b]Pyridin-6-Ones Using Either Microwave or Ultrasound Irradiation,” Tetrahedron Letters 52, no. 2 (2011): 336–40.
  • N. Kerru, L. Gummidi, S. N. Maddila, S. V. H. S. Bhaskaruni, and S. B. Jonnalagadda, “Bi2O3/FAp, a Sustainable Catalyst for Synthesis of Dihydro-[1,2,4]Triazolo[1,5-a]Pyrimidine Derivatives through Green Strategy,” Applied Organometallic Chemistry 34, no. 5 (2020): e5590.
  • N. Kerru, L. Gummidi, S. N. Maddila, K. K. Gangu, and S. B. Jonnalagadda, “Four-Component Rapid Protocol with Nickel Oxide Loaded on Fluorapatite as a Sustainable Catalyst for the Synthesis of Novel Imidazole Analogs,” Inorganic Chemistry Communications 116 (2020): 107935.
  • N. Kerru, S. V. H. S. Bhaskaruni, L. Gummidi, S. N. Maddila, P. Singh, and S. B. Jonnalagadda, “Efficient Synthesis of Novel Pyrazole-Linked 1,2,4-Triazolidine-3-Thiones Using Bismuth on Zirconium Oxide as a Recyclable Catalyst in Aqueous Medium,” Molecular Diversity 24, no. 2 (2020): 345–54.
  • N. Kerru, L. Gummidi, K. K. Gangu, S. Maddila, and S. B. Jonnalagadda, “Synthesis of Novel Furo[3,2-c]Coumarin Derivatives through Multicomponent [4 + 1] Cycloaddition Reaction Using ZnO/FAp as a Sustainable Catalyst,” ChemistrySelect 5, no. 13 (2020): 4104–10.
  • S. N. Maddila, S. Maddila, N. Kerru, S. V. H. S. Bhaskaruni, and S. B. Jonnalagadda, “Facile One-Pot Synthesis of Arylsulfonyl-4H-Pyrans Catalyzed by Ru Loaded Fluorapatite,” ChemistrySelect 5, no. 5 (2020): 1786–91.
  • S. Maddila, N. Kerru, S. Chinnam, and S. B. Jonnalagadda, “Microwave-Assisted Multicomponent Reaction: A Green and Catalyst-Free Method for the Synthesis of Poly-Functionalized 1,4-Dihydropyridines,” ChemistrySelect 4, no. 32 (2019): 9451–4.
  • N. Kerru, S. V. H. S. Bhaskaruni, L. Gummidi, S. N. Maddila, S. Maddila, and S. B. Jonnalagadda, “Recent Advances in Heterogeneous Catalysts for the Synthesis of Imidazole Derivatives,” Synthetic Communications 49, no. 19 (2019): 2437–59.
  • N. Kerru, L. Gummidi, S. Maddila, K. K. Gangu, and S. B. Jonnalagadda, “A Review on Recent Advantages in Nitrogen-Containing Molecules and Their Biological Applications,” Molecules 25, no. 8 (2020): 1909.
  • L. Nagarapu, S. Vanaparthi, R. Bantu, and C. G. Kumar, “Synthesis of Novel Benzo[4,5]Thiazolo[1,2-a]Pyrimidine-3-Carboxylate Derivatives and Biological Evaluation as Potential Anticancer Agents,” European Journal of Medicinal Chemistry 69 (2013): 817–22.
  • M. N. Bhoi, M. A. Borad, D. J. Jethava, P. T. Acharya, E. A. Pithawala, C. N. Patel, H. A. Pandya, and H. D. Patel, “Synthesis, Biological Evaluation and Computational Study of Novel Isoniazid Containing 4H-Pyrimido[2,1-b]Benzothiazoles Derivatives,” European Journal of Medicinal Chemistry 177 (2019): 12–31.
  • M. N. Bhoi, M. A. Borad, E. A. Pithawala, and H. D. Patel, “Novel Benzothiazole Containing 4H-Pyrimido[2,1-b]Benzothiazoles Derivatives: One Pot, Solvent-Free Microwave Assisted Synthesis and Their Biological Evaluation,” Arabian Journal of Chemistry 12, no. 8 (2019): 3799–813.
  • M. T. Gabr, N. S. El-Gohary, E. R. El-Bendary, and M. M. El-Kerdawy, “Synthesis and in Vitro Antitumor Activity of New Series of Benzothiazole and Pyrimido[2,1-b]Benzothiazole Derivatives,” European Journal of Medicinal Chemistry 85 (2014): 576–92.
  • S. Maddila, S. Gorle, N. Seshadri, P. Lavanya, and S. B. Jonnalagadda, “Synthesis, Antibacterial and Antifungal Activity of Novel Benzothiazole Pyrimidine Derivatives,” Arabian Journal of Chemistry 9, no. 5 (2016): 681–7.
  • P. K. Sahu, P. K. Sahu, S. Gupta, D. Thavaselvam, and D. Agarwal, “Synthesis and Evaluation of Antimicrobial Activity of 4H-Pyrimido[2,1-b]Benzothiazole, Pyrazole and Benzylidene Derivatives of Curcumin,” European Journal of Medicinal Chemistry 54 (2012): 366–78.
  • N. Safajoo, B. B. F. Mirjalili, and A. Bamoniri, “Fe3O4@Nano-Cellulose/Cu(II): A Bio-Based and Magnetically Recoverable Nano-Catalyst for the Synthesis of 4H-Pyrimido[2,1-b]Benzothiazole Derivatives,” RSC Advances 9, no. 3 (2019): 1278–83.
  • B. B. F. Mirjalili, and R. Soltani, “Nano-Kaolin/Ti4+/Fe3O4: A Magnetic Reusable Nano-Catalyst for the Synthesis of Pyrimido[2,1-b]Benzothiazoles,” RSC Advances 9, no. 33 (2019): 18720–7.
  • B. B. F. Mirjalili, and F. Aref, “Nano-Cellulose/BF3/Fe3O4: A Magnetic Bio-Based Nano-Catalyst for the Synthesis of Pyrimido[2,1-b]Benzothiazoles under Solvent-Free Conditions,” Research on Chemical Intermediates 44, no. 7 (2018): 4519–31.
  • P. K. Sahu, P. K. Sahu, J. Lal, D. Thavaselvam, and D. D. Agarwal, “A Facile Green Synthesis and in Vitro Antimicrobial Activity 4H-Pyrimido[2,1-b][1,3]Benzothiazole Derivatives Using Aluminum Trichloride under Solvent Free Conditions,” Medicinal Chemistry Research 21, no. 11 (2012): 3826–34.
  • A. B. Atar, Y. S. Jeong, and Y. T. Jeong, “Iron Fluoride: The Most Efficient Catalyst for One-Pot Synthesis of 4H-Pyrimido[2,1-b]Benzothiazoles under Solvent-Free Conditions,” Tetrahedron 70, no. 34 (2014): 5207–13.
  • S. A. Fazeli-Attar, and B. B. F. Mirjalili, “Nano-Fe3O4@SiO2–TiCl3 as a Novel Nano-Magnetic Catalyst for the Synthesis of 4H-Pyrimido[2,1-b]Benzothiazoles,” Research on Chemical Intermediates 44, no. 10 (2018): 6419–30.
  • S. H. Tan, T. S. Chuah, and P. W. Chia, “An Improved Protocol on the Synthesis of Thiazolo[3,2-a]Pyrimidine Using Ultrasonic Probe Irradiation,” Journal of the Korean Chemical Society 60, no. 4 (2016): 245–50.
  • N. Kerru, L. Gummidi, S. N. Maddila, S. V. H. S. Bhaskaruni, S. Maddila, and S. B. Jonnalagadda, “V2O5/FAp, a Sustainable Catalyst for the Synthesis of Novel [1,3,4]Thiadiazolo-[3,2-a]Pyrimidines via Green Strategy with Excellent Yields and Atom Economy,” RSC Advances 10, no. 34 (2020): 19803–10.
  • N. Kerru, L. Gummidi, S. N. Maddila, S. V. H. S. Bhaskaruni, and S. B. Jonnalagadda, “One-Pot Green Synthesis of Novel 5,10-Dihydro-1H-Pyrazolo[1,2-b]Phthalazine Derivatives with Eco-Friendly Biodegradable Eggshell Powder as an Efficacious Catalyst,” Research on Chemical Intermediates 46, no. 6 (2020): 3067–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.