321
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, Biological Validation, and Docking Studies of Novel Purine Derivatives Containing Pyridopyrimidine, Pyrazolopyridine, and Pyranonapthyridine Rings

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3694-3716 | Received 25 Aug 2020, Accepted 28 Dec 2020, Published online: 15 Jan 2021

References

  • L. A. Zhmurenko, G. M. Molodavkin, T. A. Voronina, and V. P. Lezina, “Synthesis and Antidepressant and Anxiolytic Activity of Derivatives of Pyrazolo[4,3-c]Pyridine and 4-Phenyl Hydrazinonicotinic Acids,” Pharmaceutical Chemistry Journal 46, no. 1 (2012): 15–9.
  • L. A. Smyth, T. P. Matthews, P. N. Horton, M. B. Hursthouse, and I. Collins, “Synthesis and Reactivity of 3-Amino-1H-Pyrazolo[4,3-c]Pyridin-4(5H)-Ones: Development of a Novel Kinase-Focussed Library,” Tetrahedron 66, no. 15 (2010): 2843–54.
  • T. Suksrichavalit, S. Prachayasittikul, C. Nantasenamat, C. Isarankura-Na-Ayudhya, and V. Prachayasittikul, “Copper Complexes of Pyridine Derivatives with Superoxide Scavenging and Antimicrobial Activities,” European Journal of Medicinal Chemistry 44, no. 8 (2009): 3259–65.
  • A. Anam, A. Abad, A. Mohd, and S. Shamsuzzaman, “Review: biologically Active Pyrazole Derivatives,” New Journal of Chemistry 41, no. 1 (2017): 16–41.
  • S. Delarcina Jr., C. R. Ferrari, “Process for obtaining extracts containing methylxanthine derivatives from cakes of plants of the genus Theobroma, as well as composition and use of said extract,” (US 9198848 B2 2009).
  • J. P. Monteiro, M. G. Alves, P. F. Oliveira, and B. M. Silva, “Structure-Bioactivity Relationships of Methylxanthines: Trying to Make Sense of All the Promises and the Drawbacks,” Molecules 21, no. 8 (2016): 974–32.
  • A. M. Hayallah, W. A. Elgaher, O. I. Salem, and A. A. M. A. Alim, “Design and Synthesis of Some New Theophylline Derivatives with Bronchodilator and Antibacterial Activities,” Archives of Pharmacal Research 34, no. 1 (2011): 3–21.
  • O. F. Abou-Ghadir, A. M. Hayallah, S. G. Abdel-Moty, and M. A. Hussein, “Design and Synthesis of Some New Purine-Dione Derivatives of Potential anti-Inflammatory Activity,” Der Pharma Chemica 6, (2014): 199–211.
  • T. V. Dunwiddie, B. J. Hoffer, and B. B. Fredholm, “Alkylxanthines Elevate Hippocampal Excitability. Evidence for a Role of Endogenous Adenosine,” Naunyn-Schmiedeberg's Archives of Pharmacology 316, no. 4 (1981): 326–30.
  • J. J. Kaminski, D. M. Solomon, D. J. Conn, S. C. Wong, P. Chiu, T. Massa, M. I. Siegel, and A. S. Watnick, “ Antiinflammatory activity of a series of substituted 2,3-dihydro-6-hydroxypyrimido[2,1-f]purine-4,8(1H,9H)-diones,” Journal of Medicinal Chemistry 32, no. 5 (1989): 1118–27.
  • P. M. P. Santos, J. P. Telo, and A. J. S. C. Vieira, “Structure and Redox Properties of Radicals Derived from One-Electron Oxidised Methylxanthines,” Redox Report: Communications in Free Radical Research 13, no. 3 (2008): 123–33.
  • S. R. Langman, M. C. B. L. Shohoji, J. P. Telo, A. J. S. C. Vieira, and H. M. Novais, “EPR Spectroscopy Study of the Radical Oxidation of Hydroxypurines in Aqueous Solution: Acid-Base Properties of the Derived Radicals,” Journal of the Chemical Society, Perkin Transactions 2, no. 7 (1996): 1461–5.
  • A. J. S. C. Vieira, J. P. Telo, H. F. Pereira, P. F. Patrocínio, and R. M. B. Dias, “Antioxidant Effect of Naturally Occurring Xanthines on the Oxidative Damage of DNA Bases,” Journal de Chimie Physique et de Physico-Chimie Biologique 96, no. 1 (1999): 116–23.
  • Ruth Arnold, David Beer, Gurdip Bhalay, Urs Baettig, Stephen P. Collingwood, Sarah Craig, Nicholas Devereux, Andrew Dunstan, Angela Glen, Sylvie Gomez, et al. “8-Aryl Xanthines Potent Inhibitors of Phosphodiesterase,” Bioorganic & Medicinal Chemistry Letters 12, no. 18 (2002): 2587–90.
  • L. H. Foley, P. Wang, P. Dunten, G. Ramsey, M. L. Gubler, and S. J. Wertheimer, “Modified 3-Alkyl-1, 8-Dibenzylxanthines as GTP-Competitive Inhibitors of Phosphoenolpyruvate Carboxykinase,” Bioorganic & Medicinal Chemistry Letters 13, no. 20 (2003): 3607–10.
  • A. M. Hayallah, G. Momekov, and M. Famulok, “Antitumor Activity of Some New 1, 3,8-Trisubstituted Purine-2, 6-Diones and 1, 3, 6-Trisubstituted Thiazolo [2, 3-f]Purine-2, 4-Diones,” Bulletin of Pharmaceutical Sciences 31, no. 2 (2008): 391–9.
  • (a) R. V. Kalla, E. Elzein, Perry, T. Li, X. Palle, V. Varkhedkar, V. Gimbel, A. Maa, T. Zeng, D. Zablocki, “Novel 1,3-Disubstituted 8-(1-Benzyl-1H-Pyrazol-4-yl) Xanthines: High Affinity and Selective A2B Adenosine Receptor Antagonists,” Journal of Medicinal Chemistry 49, no. 12 (2006): 3682–92; (b) R. Y. Lin, B. N. Wu, Y. C. Lo, L. M. An, Z. K. Dai, Y. T. Lin, C. S. Tang, I. J. Chen, “A Xanthine-Based Epithelium-Dependent Airway Relaxant KMUP-3 (7-[2-[4-(4-Nitrobenzene)Piperazinyl]Ethyl]-1,3-Dimethylxanthine) Increases Respiratory Performance and Protects Against Tumor Necrosis Factor-Alpha-Induced Tracheal Contraction, Involving Nitric Oxide Release and Expression of cGMP and Protein Kinase GJ,” Journal of Pharmacology and Experimental Therapeutics 316, no. 2 (2006): 709–17; (c) K. Ito, S. Lim, G. Caramori, B. Cosio, K. F. Chung, I. M. Adcock, P. J. Barnes, “A Molecular Mechanism of Action of Theophylline: Induction of Histone Deacetylase Activity to Decrease Inflammatory Gene Expression,” National Academy of Sciences of the United States of America 99, no. 13 (2002): 8921–26.
  • (a) G. Caramori, I. Adcock, “Pharmacology of Airway Inflammation in Asthma and COPD, Pulm,” Pharmacology & Therapeutics 16, no. 5 (2003) 247–77; (b) V. Dal Piaz, M. P. Giavannoni, “Phosphodiesterase 4 Inhibitors, Structurally Unrelated to Rolipram, as Promising Agents for the Treatment of Asthma and Other Pathologies,” European Journal of Medicinal Chemistry 35, no. 5 (2000): 463–80; (c) W. F. Kiesman, J. Zhao, P. R. Conlon, J. E. Dowling, R. C. Petter, F. Lutterodt, X. Jin, G. Smits, M. Fure, A. Jayaraj, J. Kim, G. Sullivan, J. Linden, “Potent and Orally Bioavailable 8-Bicyclo[2.2.2]Octylxanthines as Adenosine A1 Receptor Antagonists,” Journal of Medicinal Chemistry 49, no. 24 (2006): 7119–31.
  • (a) F. V. Rao, O. A. Andersen, K. A. Vora, J. A. DeMartino, D. M. F. van Aalten, “Methylxanthine Drugs are Chitinase Inhibitors: Investigation of Inhibition and Binding Modes,” The Journal of Biological Chemistry 12, no. 37 (2006): 27278–80; (b) A. W. Schuttelkopf, O. A. Andersen, F. V. Rao, M. Allwood, C. Lloyd, I. M. Eggleston, D. M. F. van Aalten, “Screening-Based Discovery and Structural Dissection of a Novel Family 18 Chitinase Inhibitor,” Journal of Biological Chemistry 281, no. 37 (2006):27278–85.
  • T. P. T. Cushnie, B. Cushnie, and A. J. Lamb, “Alkaloids: An Overview of Their Antibacterial, Antibiotic-Enhancing and Antivirulence Activities,” International Journal of Antimicrobial Agents 44, no. 5 (2014): 377–86.
  • S. Perviz, H. Khan, and A. Pervaiz, “Plant Alkaloids as an Emerging Therapeutic Alternative for the Treatment of Depression,” Frontiers in Pharmacology 7, (2016): 28.
  • B. G. Benfey, “Theophylline and Phenylephrine Effects on Cardiac Relaxation,” British Journal of Pharmacology 59, no. 1 (1977): 75–81.
  • G. Yu, V. Maskray, S. Jackson, C. Swift, and B. Tiplady, “A Comparison of the Central Nervous System Effects of Caffeine and Theophylline in Elderly Subjects,” British Journal of Clinical Pharmacology 32, no. 3 (1991): 341–45.
  • K. F. Rabe, H. Magnussen, and G. Dent, “Theophylline and Selective PDE Inhibitors as Bronchodilators and Smooth Muscle Relaxants,” European Respiratory Journal 8, no. 4 (1995): 637–42.
  • M. Bell, E. Jackson, Z. Mi, J. McCombs, and J. Carcillo, “Low-Dose Theophylline Increases Urine Output in Diuretic-Dependent Critically ILL Children,” Intensive Care Medicine 24, no. 10 (1998): 1099–105.
  • D. Boison, “Methylxanthines, Seizures and Excitotoxicity,” Handbook of Experimental Pharmacology 200 (2011): 251–66.
  • L. C. Foukas, N. Daniele, C. Ktori, K. E. Anderson, J. Jensen, and P. R. Shepherd, “Direct Effects of Caffeine and Theophylline on p110 Delta and Other Phosphoinositide 3-Kinases. Differential Effects on Lipid Kinase and Protein Kinase Activities,” Journal of Biological Chemistry 277, no. 40 (2002): 37124–130.
  • K. Sugimura, and A. Mizutani, “The Inhibitory Effect of Xanthine Derivatives on Alkaline Phosphatase in the Rat Brain,” Histochemistry 61, no. 2 (1979): 131–37.
  • Y. Cao, J. Wei, L. Zou, T. Jiang, G. Wang, L. Chen, L. Huang, F. Meng, L. Huang, N. Wang, X. Zhou, et al. “Ruxolitinib in Treatment of Severe Coronavirus Disease 2019 (COVID-19): A Multicenter, Single-Blind, Randomized Controlled Trial,” Journal of Allergy and Clinical Immunology 146, no. 1 (2020): 137–46.
  • J. Glogowski, D. R. Danforth, and A. Ciereszko, “Inhibition of Alkaline Phosphatase Activity of Boar Semen by Pentoxifylline, Caffeine, and Theophylline,” Journal of Andrology 23, no. 6 (2002): 783–92.
  • V. Papesch, and E. F. Schroeder, “Synthesis of 1-Mono-and 1, 3-di-Substituted 6-Aminouracils, Diuretic Activity,” The Journal of Organic Chemistry 16, no. 12 (1951): 1879–90.
  • A. R. Saundane, K. Vijaykumar, M. Yarlakatti, W. Prabhaker, and A. V. Vaijinath, “Synthesis and Biological Activities of Some Indole Analogues Containing Pyridine, Pyridopyrimidine and Pyranonapthyridine Systems,” Heterocyclic Letters 1, no. 4 (2011): 339–50.
  • F. F. Blicke, and H. C. Godt, “Reactions of 1,3-Dimethyl-5,6-Diaminouracil,” Journal of the American Chemical Society 76, no. 10 (1954): 2798–800.
  • H. Ben Ammar, M. T. Kaddachi, and P. H. Kahn, “Conversion of Malononitrile into 2-Cyanomethyl Compounds,” Journal in Physics and Chemistry 9 (2003): 137–39.
  • C. L. Gibson, S. La Rosa, and C. Suckling, “A Prototype Solid Phase Synthesis of Pteridines and Related Heterocyclic Compounds,” Organic & Biomolecular Chemistry 1, no. 11 (2003): 1909–18.
  • A. M. Hayallah, and M. Famulok, “Synthesis of New 1, 3, 8-Trisubstituted Purine-2, 6-Diones and 1, 3, 6-Trisubstituted Thiazolo [2, 3-f] Purine-2, 4-Diones,” Heterocycles 74, no. 1 (2007): 369–82.
  • A. R. Saundane, K. Vijaykumar, A. V. Vaijinath, and W. Prabhaker, “Synthesis, Antimicrobial and Antioxidant Activities of Some New Indole Derivatives Containing Pyridopyrimidine and Pyrazolopyridine Moieties,” Medicinal Chemistry Research 22, no. 2 (2013): 806–17.
  • A. R. Saundane, K. Vijaykumar, and A. V. Vaijinath, “Synthesis of Novel 2-Amino-4-(5'-Substituted 2'-Phenyl-1H-Indol-3'-yl)-6-Aryl-4H-Pyran-3-Carbonitrile Derivatives as Antimicrobial and Antioxidant Agents,” Bioorganic & Medicinal Chemistry Letters 23, no. 7 (2013): 1978–84.
  • K. A. Toharo, A. Toharo, Foundation of Microbiology (Dubuque: W.C. Brown Publisher, 1993), edition, 3, 326.
  • National Committee for Clinical Laboratory Standards (NCCLS), Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved Standard M27-A (Villanova, PA: NCCLS, 1997).
  • National Committee for Clinical Laboratory Standards (NCCLS), Standard methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 2nd ed. Approved standard M7-A2 (Villanova, PA: National Committee for Clinical Laboratory Standards, 1990).
  • National Committee for Clinical Laboratory Standards (NCCLS), Performance standards for antimicrobial susceptibility testing; ninth informational supplement. M100-S9 (Villanova, PA: National Committee for Clinical Laboratory Standards, 1999).
  • V. D. Warner, J. D. Musto, J. N. Sane, K. H. Kim, and G. L. Grunewald, “Quantitative Structure-Activity Relationships for 5-Substituted 8-Hydroxyquinolines as Inhibitors of Dental Plaque,” Journal of Medicinal Chemistry 20, no. 1 (1977): 92–96.
  • R.V. Goering, H.M. Dockrell, M. Zuckerman, P.L. Chiodini, I.M. Roitt, The Bacteria. Mims's Medical Microbiology, 5th ed. (China: Elsevier, 2013), 7.
  • Vaijinath, A. Verma, A. R. Saundane, S. M. Rajkumar, Raju. Shamro, and K. Vijaykumar, “Synthesis, Biological Evaluation and Docking Studies of Some New Indolyl-Pyridine Containing Thiazolidinone and Azetidinone Analogs,” Polycyclic Aromatic Compounds (2020): 1-15. 10.1080/10406638.2020.1786706.
  • T. Mosmann, “Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays,” Journal of Immunological Methods 65, no. 1–2 (1983): 55–63.
  • V. Lobo, A. Patil, A. Phatak, and N. Chandra, “Free Radicals, Antioxidants and Functional Foods: Impact on Human Health,” Pharmacognosy Reviews 4, no. 8 (2010): 118–26.
  • L. A. Pham-Huy, H. He, and C. Pham-Huy, “Free Radicals, Antioxidants in Disease and Health,” International Journal of Biomedical Science 4, no. 2 (2008): 89–96.
  • (a) B. Halliwell, J. M. C. Gutteridge, Free Radicals in Biology and Medicine, 4th ed. (Clarendon: Oxford, UK, 2007); (b) A. M. Papas, Antioxidant (CRC Press: Boca Raton, 1999); (c) B. Halliwell, “Reactive Species and Antioxidants. Redox Biology is a Fundamental Theme of Aerobic Life,” Journal of Plant Physiology 141 (2006): 312–22; (d) O. Firuzi, R. Miri, M. Tavakkoli, L. Saso, Antioxidant Therapy: Current Status and Future Prospects,” Current Medicinal Chemistry, 18, no. 25 (2011): 3871–88; (e) S. Cuzzocrea, D. P. Riley, A. P. Caputi, D. Salvemini, “Antioxidant Therapy: A New Pharmacological Approach in Shock, Inflammation, and Ischemia/Reperfusion Injury,” Pharmacological Reviews 53, no. 1 (2001): 135–59.
  • B. Sagar Kedare, and R. P. Singh, “Genesis and Development of DPPH Method of Antioxidant Assay,” Journal of Food Science and Technology 48, no. 4 (2011): 412–22.
  • A. Biswal, R. Venkataraghavan, and V. Pazhamalai, “Molecular Docking of Various Bioactive Compounds from Essential Oil of Trachyaspermum Ammi against the Fungal Enzyme Candidapepsin-1,” Journal of Applied Pharmaceutical Science 9, no. 5 (2019) 21–32.
  • A. R. Biswal, K. Mirunalini, P. Jayshree, and V. Pazhamalai. “Molecular Docking Analysis of Bioactive Compounds of Acacia Concinna against Fungal Protein,” Journal of Pharmaceutical Sciences and Research 11, no. 4 (2019): 1216–22.
  • M. Vieth, and J. J. Sutherland, “Dependence of Molecular Properties on Proteomic Family for Marketed Oral Drugs,” Journal of Medicinal Chemistry 49, no. 12 (2006): 3451–53.
  • A. Daina, O. Michielin, and V. Zoete, “ SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules,” Scientific Reports 7 (2017): 42717.
  • F. Cheng, W. Li, Y. Zhou, J. Shen, Z. Wu, G. Liu, P. W. Lee, and Y. Tang, “admetSAR: A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties,” Journal of Chemical Information and Modeling 52, no. 11 (2012): 3099–105.
  • T. Hatano, H. Kagawa, T. Yasuhara, and T. Okuda, “Two New Flavonoids and Other Constituents in Licorice Root: Their Relative Astringency and Radical Scavenging Effects,” Chemical & Pharmaceutical Bulletin 36, no. 6 (1988): 2090–97.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.