236
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

LUDOX HS-40 Catalyzed Pot, Atom and Step Economic (PASE) Synthesis of Pyran Annulated Heterocyclic Scaffolds

&
Pages 3724-3735 | Received 11 Nov 2020, Accepted 29 Dec 2020, Published online: 19 Jan 2021

References

  • (a) R. A. Sheldon, “Selective Catalytic Synthesis of Fine Chemicals: Opportunities and Trends,” Journal of Molecular Catalysis A: Chemical 107, no. 1-3 (1996) : 75–83. (b) R. A. Sheldon, I. Arends, and U. Hanefeld, (2007) Green Chemistry and Catalysis, John Wiley & Sons.
  • (a) P. A. Clarke, S. Santos, and W. H. Martin, “Combining Pot, Atom and Step Economy (PASE) in Organic Synthesis, Synthesis of Tetrahydropyran-4-Ones,” Green Chemistry 9, no. 5 (2007) : 438–40. (b) W. Zhang, and W.-B. Yi, “(2019) Pot, Atom, and Step Economy (PASE) Synthesis,” Springer. (c) P. A. Clarke, A. V. Zaytzev, and A. C. Whitwood, “Pot, Atom and Step Economic (PASE) Synthesis of Highly Functionalized Piperidines: A Five-Component Condensation,” Tetrahedron Letters 48, no. 30 (2007) : 5209–12. (d) D. Bhuyan, R. Sarma, Y. Dommaraju, and D. Prajapati, “Catalyst-and Solvent-Free, Pot, Atom and Step Economic Synthesis of Tetrahydroquinazolines by an aza-Diels–Alder Reaction Strategy,” Green Chem. 16, no. 3 (2014) : 1158–62. (e) S. J. Kalita, H. Mecadon, and D. C. Deka, “Pot, Atom and Step Economic (PASE) Synthesis of 5-Monoalkylbarbiturates through Domino aldol-Michael Reaction,” Tetrahedron Letters 56, no. 5 (2015) : 731–4. (f) M. N. Elinson, F. V. Ryzhkov, V. A. Korolev, and M. P. Egorov, “Pot, Atom and Step-Economic (PASE) Synthesis of Medicinally Relevant Spiro [Oxindole-3,4′-Pyrano[4,3-b]Pyran]Scaffold,” Heterocyclic Communications 22, no. 1 (2016) : 11–5.
  • (a)B. M. Trost, “The Atom Economy-a Search for Synthetic Efficiency,” Science 254, no. 5037 (1991) : 1471–7. (b) B. M. Trost, “Atom Economy-a Challenge for Organic Synthesis: Homogeneous Catalysis Leads the Way,” Angewandte Chemie International Edition in English 34, no. 3 (1995) : 259–81.
  • (a) P. A. Wender, F. C. Bi, G. G. Gamber, F. Gosselin, R. D. Hubbard, M. J. Scanio, R. Sun, T. J. Williams, and L. Zhang, “Toward the Ideal Synthesis. New Transition Metal-Catalyzed Reactions Inspired by Novel Medicinal Leads,” Pure and Applied Chemistry 74, no. 1 (2002) : 25–31. (b) P. Wender, and B. Miller, “(1993)27. Organic Synthesis: Theory and Applications,” Ed. T. Hudlicky. Greenwich: JAP Press, CT 2.
  • (a) P. Prasanna, S. Perumal, and J. C. Menéndez, “Chemodivergent, Multicomponent Domino Reactions in Aqueous Media: l-Proline-Catalyzed Assembly of Densely Functionalized 4 H-Pyrano [2,3-c] Pyrazoles and Bispyrazolyl Propanoates from Simple, Acyclic Starting Materials,” Green Chemistry 15, no. 5 (2013) : 1292–9. (b) Y. Hayashi, “Pot Economy and One-Pot Synthesis,” Chemical Science 7, no. 2 (2016) : 866–80.
  • (a) L.-B. Sun, X.-Q. Liu, and H.-C. Zhou, “Design and Fabrication of Mesoporous Heterogeneous Basic Catalysts,” Chemical Society Reviews 44, no. 15 (2015) : 5092–147. (b) A. Corma, and H. Garcia, “Organic Reactions Catalyzed over Solid Acids,” Catalysis Today 38, no. 3 (1997) : 257–308. (c) V. Polshettiwar, and R. S. Varma, “Green Chemistry by Nano-Catalysis,” Green Chemistry 12, no. 5 (2010) : 743–54. (d) D. Astruc, F. Lu, and J. R. Aranzaes, “Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis,” Angewandte Chemie (International ed. in English) 44, no. 48 (2005) : 7852–72. (e) E. Derouane, G. Crehan, C. Dillon, D. Bethell, H. He, and S. Derouane-Abd Hamid, “Zeolite Catalysts as Solid Solvents in Fine Chemicals Synthesis: 2. competitive Adsorption of the Reactants and Products in the Friedel–Crafts Acetylations of Anisole and Toluene,” Journal of Catalysis 194, no. 2 (2000) : 410–23. (f) A. Cornelis, A. Gerstmans, P. Laszlo, A. Mathy, and I. Zieba, “Friedel-Crafts Acylations with Modified Clays as Catalysts,” Catalysis Letters 6, no. 1 (1990) : 103–9. (g) S.-E. Park, “Green Approaches via Nanocatalysis with Nanoporous Materials: Functionalization of Mesoporous Materials for Single Site Catalysis,” Current Applied Physics 8, no. 6 (2008) : 664–8.
  • (a) M. M. Heravi, and M. Daraie, “Heterogeneous Catalytic Three-Component One-Pot Synthesis of Novel 8H-[1,3] Dioxolo [4,5-g] Chromenes by Basic Alumina in Water,” Monatshefte Für Chemie - Chemical Monthly 145, no. 9 (2014) : 1479–82. (b) A. D. Murkute, J. E. Jackson, and D. J. Miller, “Supported Mesoporous Solid Base Catalysts for Condensation of Carboxylic Acids,” Journal of Catalysis 278, no. 2 (2011) : 189–99. (c) G. M. Ziarani, N. Lashgari, and A. Badiei, “Sulfonic Acid-Functionalized Mesoporous Silica (SBA-Pr-SO3H) as Solid Acid Catalyst in Organic Reactions,” Journal of Molecular Catalysis A: Chemical 397, (2015) : 166–91. (d) Y. Jin, J. Li, L. Peng, and C. Gao, “Discovery of Neat Silica Gel as a Catalyst: An Example of S → O acetyl migration reaction ,” Chemical Communications (Cambridge, England) 51, no. 84 (2015) : 15390–3. (e) J. Lu, and P. H. Toy, “Organic Polymer Supports for Synthesis and for Reagent and Catalyst Immobilization,” Chemical Reviews 109, no. 2 (2009) : 815–38. [19128147]
  • (a) G. M. Ziarani, A. Badiei, S. Mousavi, N. Lashgari, and A. Shahbazi, “Application of Amino-Functionalized SBA-15 Type Mesoporous Silica in One-Pot Synthesis of Spirooxindoles,” Chinese Journal of Catalysis 33, no. 11-12 (2012) : 1832–9. (b) K. Eskandari, B. Karami, and S. Khodabakhshi, “Novel Silica Sodium Carbonate (SSC): Preparation, Characterization and Its First Catalytic Application to the Synthesis of New Dihydropyrano [2,3-c] Pyrazoles,” Catalysis Communications 54, (2014) : 124–30. (c) K. Niknam, M. S. Habibabad, A. Deris, and N. Aeinjamshid, “Preparation of Silica-Bonded N-Propyltriethylenetetramine as a Recyclable Solid Base Catalyst for the Synthesis of 4,4′-(Arylmethylene)Bis(1H-Pyrazol-5-Ols),” Monatshefte Für Chemie - Chemical Monthly 144, no. 7 (2013) : 987–92. (d) K. Niknam, and P. Abolpour, “Synthesis of Spirooxindole Pyrimidines Catalyzed by Silica-Bonded N-Propyltriethylenetetramine as a Recyclable Solid Base Catalyst in Aqueous Medium,” Monatshefte Für Chemie - Chemical Monthly 146, no. 4 (2015) : 683–90. (e) K. Niknam, N. Borazjani, R. Rashidian, and A. Jamali, “Silica-Bonded N-Propylpiperazine Sodium n-Propionate as Recyclable Catalyst for Synthesis of 4H-Pyran Derivatives,” Chinese Journal of Catalysis 34, no. 12 (2013) : 2245–54. (f) R. Gupta, S. Layek, and D. D. Pathak, “Synthesis and Characterization of Guanine-Functionalized Mesoporous Silica [SBA-16-G]: a Metal-Free and Recyclable Heterogeneous Solid Base Catalyst for Synthesis of Pyran-Annulated Heterocyclic Compounds,” Research on Chemical Intermediates 45, no. 3 (2019) : 1619–37. (g) A. Hasaninejad, M. Shekouhy, N. Golzar, A. Zare, and M. M. Doroodmand, “Silica Bonded n-Propyl-4-Aza-1-Azoniabicyclo [2.2.2] Octane Chloride (SB-DABCO): a Highly Efficient, Reusable and New Heterogeneous Catalyst for the Synthesis of 4H-Benzo [b] Pyran Derivatives,” Applied Catalysis A: General 402, no. 1-2 (2011) : 11–22. (h) S. Sadjadi, M. M. Heravi, V. Zadsirjan, and V. Farzaneh, “SBA-15/Hydrotalcite Nanocomposite as an Efficient Support for the Immobilization of Heteropolyacid: A Triply-Hybrid Catalyst for the Synthesis of 2-Amino-4H-Pyrans in Water,” Applied Surface Science 426, (2017) : 881–9. (i) A. M. Jadhav, S. K. Krishnammagari, J. T. Kim, and Y. T. Jeong, “A Highly Efficient and Recyclable Silica-Supported Tungstic Acid (STA) Catalyst for the Synthesis of Pyrano [3,2-c] Chromen-5-Ones under Solvent Free Conditions,” Tetrahedron 73, no. 34 (2017) : 5163–9. (j) B. Karami, and M. Kiani, “Silica-Supported Molybdic Acid: preparation, Characterization, and Its Catalytic Application in Synthesis of Pyranocoumarins,” Monatshefte Für Chemie - Chemical Monthly 147, no. 6 (2016) : 1117–24. (k) B. Karami, M. Kiani, S. J. Hosseini, and M. Bahrami, “Synthesis and Characterization of Novel Nanosilica Molybdic Acid and Its First Catalytic Application in the Synthesis of New and Known Pyranocoumarins,” New Journal of Chemistry 39, no. 11 (2015) : 8576–81. (l) S. N. Maddila, S. Maddila, W. E. Van Zyl, and S. B. Jonnalagadda, “Ceria-Vanadia/Silica‐Catalyzed Cascade for C − C and C − O Bond Activation: Green One‐Pot Synthesis of 2‐Amino‐3‐Cyano‐4H‐Pyrans,” ChemistryOpen 5, no. 1 (2016) : 38–42. (m) Y. Sarrafi, E. Mehrasbi, A. Vahid, and M. Tajbakhsh, “Well-Ordered Mesoporous Silica Nanoparticles as a Recoverable Catalyst for One-Pot Multicomponent Synthesis of 4H-Chromene Derivatives,” Chinese Journal of Catalysis 33, no. 9-10 (2012) : 1486–94. (n) P. K. Shukla, A. Verma, and P. Pathak, “A Prospective Study on Silica Based Heterogeneous Catalyst as Modern Organic Synthesis Tool,” Archives of Applied Science Research 6, no. 5 (2014) : 18–25. (o) M. A. Chari, and K. Syamasundar, “Silica Gel/NaHSO4 Catalyzed One-Pot Synthesis of Hantzsch 1, 4-Dihydropyridines at Ambient Temperature,” Catalysis Communications 6, no. 9 (2005) : 624–6. (p) D. Habibi, and M. Nasrollahzadeh, “Silica-Supported Ferric Chloride (FeCl3-SiO2): an Efficient and Recyclable Heterogeneous Catalyst for the Preparation of Arylaminotetrazoles,” Synthetic Communications 40, no. 21 (2010) : 3159–67.
  • (a) M. M. Collinson, N. Moore, P. Deepa, and M. Kanungo, “Electrodeposition of Porous Silicate Films from Ludox Colloidal Silica,” Langmuir 19, no. 18 (2003) : 7669–72. (b). Cabrera, A. Cabrera, F H. Larsen, and C. Felby, “Solid-State 29Si NMR and FTIR Analyses of Lignin-Silica Coprecipitates,” Holzforschung 70, no. 8 (2016) : 709–18. (c) D. Banham, F. Feng, T. Fürstenhaupt, K. Pei, S. Ye, and V. Birss, “Novel Mesoporous Carbon Supports for PEMFC Catalysts,” Catalysts 5, no. 3 (2015) : 1046–67. (d) See http://www.gracedavison.com/products/Ludox/overview.html.
  • (a) Z.-Q. Xu, M. G. Hollingshead, S. Borgel, C. Elder, A. Khilevich, and M. T. Flavin, “In Vivo anti-HIV Activity of (+)-Calanolide a in the Hollow Fiber Mouse Model,” Bioorganic & Medicinal Chemistry Letters 9, no. 2 (1999) : 133–8. (b) E. A. Bey, M. S. Bentle, K. E. Reinicke, Y. Dong, C.-R. Yang, L. Girard, J. D. Minna, W. G. Bornmann, J. Gao, and D. A. Boothman, “An NQO1-and PARP-1-Mediated Cell Death Pathway Induced in Non-Small-Cell Lung Cancer Cells by β-Lapachone,” Proceedings of the National Academy of Sciences 104, no. 28 (2007) : 11832–7. (c) W. Kemnitzer, J. Drewe, S. Jiang, H. Zhang, J. Zhao, C. Crogan-Grundy, L. Xu, S. Lamothe, H. Gourdeau, R. Denis, et al. “Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 3. Structure-activity relationships of fused rings at the 7,8-positions ,” Journal of Medicinal Chemistry 50, no. 12 (2007) : 2858–64. (d) M. N. Erichsen, T. H. V. Huynh, B. Abrahamsen, J. F. Bastlund, C. Bundgaard, O. Monrad, A. Bekker-Jensen, C. W. Nielsen, K. Frydenvang, A. A. Jensen, et al. “Structure-Activity Relationship Study of First Selective Inhibitor of Excitatory Amino Acid Transporter Subtype 1: 2-Amino-4-(4-Methoxyphenyl)-7-(Naphthalen-1-yl)-5-Oxo-5,6,7,8-Tetrahydro-4H-Chromene-3-Carbonitrile (UCPH-101),” Journal of Medicinal Chemistry 53, no. 19 (2010) : 7180–91. (e)W. Kemnitzer, J. Drewe, S. Jiang, H. Zhang, C. Crogan-Grundy, D. Labreque, M. Bubenick, G. Attardo, R. Denis, S. Lamothe, et al. “Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high throughput screening assay. 4. Structure-activity relationships of N-alkyl substituted pyrrole fused at the 7,8-positions ,” Journal of Medicinal Chemistry 51, no. 3 (2008) : 417–23. (f)M. Mahmoodi, A. Aliabadi, S. Emami, M. Safavi, S. Rajabalian, M.-A. Mohagheghi, A. Khoshzaban, A. Samzadeh-Kermani, N. Lamei, A. Shafiee, et al. “Synthesis and in-vitro cytotoxicity of poly-functionalized 4-(2-arylthiazol-4-yl)-4H-chromenes ,” Archiv Der Pharmazie 343, no. 7 (2010) : 411–6. #x00028; (g) F. M. Abdelrazek, P. Metz, and E. K. Farrag, “Synthesis and Molluscicidal Activity of 5‐Oxo‐5,6,7,8‐Tetrahydro‐4H‐Chromene Derivatives,” Archiv Der Pharmazie 337, no. 9 (2004) : 482–5. (h) J. Y.-C. Wu, W.-F. Fong, J.-X. Zhang, C.-H. Leung, H.-L. Kwong, M.-S. Yang, D. Li, and H.-Y. Cheung, “Reversal of Multidrug Resistance in Cancer Cells by Pyranocoumarins Isolated from Radix Peucedani,” European Journal of Pharmacology 473, no. 1 (2003) : 9–17. (i) A. Venkatesham, R. S. Rao, K. Nagaiah, J. Yadav, G. RoopaJones, S. Basha, B. Sridhar, and A. Addlagatta, “Synthesis of New Chromeno-Annulated Cis-Fused Pyrano [3,4-c] Pyran Derivatives via Domino Knoevenagel–hetero-Diels–Alder Reactions and Their Biological Evaluation towards Antiproliferative Activity,” MedChemComm 3, no. 6 (2012) : 652–8.
  • (a) D. Kumar, V. B. Reddy, S. Sharad, U. Dube, and S. Kapur, “A Facile One-Pot Green Synthesis and Antibacterial Activity of 2-Amino-4H-Pyrans and 2-Amino-5-Oxo-5,6,7,8-Tetrahydro-4H-Chromenes,” European Journal of Medicinal Chemistry 44, no. 9 (2009) : 3805–9. (b) G. Zhang, Y. Zhang, J. Yan, R. Chen, S. Wang, Y. Ma, and R. Wang, “One-Pot Enantioselective Synthesis of Functionalized Pyranocoumarins and 2-Amino-4H-Chromenes: discovery of a Type of Potent Antibacterial Agent,” The Journal of Organic Chemistry 77, no. 2 (2012) : 878–88.
  • (a) S. A. Patil, J. Wang, X. S. Li, J. Chen, T. S. Jones, A. Hosni-Ahmed, R. Patil, W. L. Seibel, W. Li, D. D. Miller, et al. “New Substituted 4H-Chromenes as Anticancer Agents,”Bioorganic & Medicinal Chemistry Letters 22, 13 (2012): 4458–61.,” no. (b) P. K. Paliwal, S. R. Jetti, and S. Jain, “Green Approach towards the Facile Synthesis of Dihydropyrano (c) Chromene and Pyrano [2,3-d] Pyrimidine Derivatives and Their Biological Evaluation,” Medicinal Chemistry Research 22, no. 6 (2013) : 2984–90.
  • F. M. Abdelrazek, P. Metz, and E. K. Farrag, “Synthesis and Molluscicidal Activity of 5‐Oxo‐5,6,7, 8‐Tetrahydro‐4H‐Chromene Derivatives,” Archiv Der Pharmazie 337, no. 9 (2004) : 482–5.
  • C. W. Smith, J. M. Bailey, M. E. Billingham, S. Chandrasekhar, C. P. Dell, A. K. Harvey, C. A. Hicks, A. E. Kingston, and G. N. Wishart, “The anti-Rheumatic Potential of a Series of 2,4-di-Substituted-4H-Naphtho [1,2-b] Pyran-3-Carbonitriles,” Bioorganic & Medicinal Chemistry Letters 5, no. 23 (1995) : 2783–8.
  • L. Bonsignore, G. Loy, D. Secci, and A. Calignano, “Synthesis and Pharmacological Activity of 2-Oxo-(2H) 1-Benzopyran-3-Carboxamide Derivatives,” European Journal of Medicinal Chemistry 28, no. 6 (1993) : 517–20.
  • D.-O. Moon, Y. H. Choi, N.-D. Kim, Y.-M. Park, and G.-Y. Kim, “ Anti-inflammatory effects of beta-lapachone in lipopolysaccharide-stimulated BV2 microglia,” International Immunopharmacology 7, no. 4 (2007) : 506–14.
  • M. T. Flavin, J. D. Rizzo, A. Khilevich, A. Kucherenko, A. K. Sheinkman, V. Vilaychack, L. Lin, W. Chen, E. M. Greenwood, T. Pengsuparp, et al. “Synthesis, Chromatographic Resolution, and anti-human immunodeficiency virus activity of (+/-)-calanolide A and its enantiomers,” Journal of Medicinal Chemistry 39, no. 6 (1996) : 1303–13.
  • A. R. Saundane, K. Vijaykumar, and A. V. Vaijinath, “Synthesis of Novel 2-amino-4-(5'-substituted 2'-phenyl-1H-indol-3'-yl)-6-aryl-4H-pyran-3-carbonitrile derivatives as antimicrobial and antioxidant agents,” Bioorganic & Medicinal Chemistry Letters 23, no. 7 (2013) : 1978–84.
  • B. I. Usachev, “2-(Trifluoromethyl)-4H-Pyran-4-Ones: Convenient, Available and Versatile Building-Blocks for Regioselective Syntheses of Trifluoromethylated Organic Compounds,” Journal of Fluorine Chemistry 172, (2015) : 80–91.
  • S. Wang, Q. Qi, C. Li, G. Ding, and S.-H. Kim, “Photoswitching of Bisthienylethene Using 2D-π-a Type Pyran-Based Fluorescent Dye for Rewritable Optical Storage,” Dyes and Pigments 89, no. 2 (2011) : 188–92.
  • M. Darbarwar, and V. Sundaramurthy, “Synthesis of Coumarins with 3:4-Fused Ring Systems and Their Physiological Activity,” Synthesis 1982, no. 05 (1982) : 337–88.
  • D. Armesto, W. M. Horspool, N. Martin, A. Ramos, and C. Seoane, “Synthesis of Cyclobutenes by the Novel Photochemical Ring Contraction of 4-Substituted 2-Amino-3,5-Dicyano-6-Phenyl-4H-Pyrans,” The Journal of Organic Chemistry 54, no. 13 (1989) : 3069–72.
  • (a) A. Abdel-Rahman, E. Keshk, M. Hanna, and S. M. El-Bady, “Synthesis and Evaluation of Some New Spiro Indoline-Based Heterocycles as Potentially Active Antimicrobial Agents,” Bioorganic & Medicinal Chemistry 12, no. 9 (2004) : 2483–8. (b) A. Jossang, P. Jossang, H. A. Hadi, T. Sevenet, and B. Bodo, “Horsfiline, an Oxindole Alkaloid from Horsfieldia Superb,” The Journal of Organic Chemistry 56, no. 23 (1991) : 6527–30. (c) A. C. Peterson, and J. M. Cook, “Studies Directed toward the Enantiospecific Synthesis of Gardneria, Voacanga, and Alstonia Oxindole Alkaloids,” The Journal of Organic Chemistry 60, no. 1 (1995) : 120–9. (d). Leclercq, M-C De. Pauw-Gillet, R. Bassleer, and L. Angenot, “Screening of Cytotoxic Activities of Strychnos Alkaloids (Methods and Results),” Journal of Ethnopharmacology 15, no. 3 (1986) : 305–16. (e) C.-B. Cui, H. Kakeya, and H. Osada, “Novel Mammalian Cell Cycle Inhibitors, Spirotryprostatins a and B, Produced by Aspergillus fumigatus, Which Inhibit Mammalian Cell Cycle at G2/M Phase,” Tetrahedron 52, no. 39 (1996) : 12651–66. (f) A. S. Girgis, “Regioselective Synthesis of Dispiro [1H-Indene-2,3′-Pyrrolidine-2′,3″-[3H]Indole]-1,2″(1″H)-Diones of Potential anti-Tumor Properties,” European Journal of Medicinal Chemistry 44, no. 1 (2009) : 91–100.
  • (a) H. R. Heydari, R. Rahimi, M. Kangani, A. Yazdani-Elah-Abadi, and M. Lashkari, “K2CO3: A Mild and Efficient Catalyst for the Synthesis of Pyran Annulated Heterocyclic Systems by Grinding Method under Solvent-Free Conditions,” Acta Chemica Iasi 25, no. 2 (2017) : 163–78. (b)N. Dinh Thanh, D. Son Hai, V. Thi Ngoc Bich, P. Thi Thu Hien, N. Thi Ky Duyen, Nguyen Thi Mai, T. Thi Dung, H. Thi Kim Van, V. Ngoc Toan, N. H. Huy, et al. “Synthesis and Structure of Some Substituted 2-Amino-4-Aryl-7-Propargyloxy-4H-Chromene-3-Carbonitriles,” Synthetic Communications 49, no. 1 (2019) : 102–17. (c). Shaabani, R. Ghadari, S. Ghasemi, M. Pedarpour, A. H. Rezayan, A. Sarvary, and S. W. Ng, “Novel one-pot three- and pseudo-five-component reactions: synthesis of functionalized benzo[g]- and dihydropyrano[2,3-g]chromene derivatives ,” Journal of Combinatorial Chemistry 11, no. 6 (2009) : 956–9. (d). Zheng, and Y. Li, “Basic Ionic Liquid-Catalyzed Multicomponent Synthesis of Tetrahydrobenzo [b] Pyrans and Pyrano [c] Chromenes,” Mendeleev Communications 21, no. 5 (2011) : 280–1. (e) K. Rad-Moghadam, and L. Youseftabar-Miri, “Ambient Synthesis of Spiro[4H-Pyran-Oxindole] Derivatives under [BMIm]BF4 Catalysis,” Tetrahedron 67, no. 31 (2011) : 5693–9. (f) M. S. Mirak-Mahaleh, and K. Rad-Moghadam, “A Novel Amphipathic Low-Melting Complex Salt: An Efficient Homogeneous Catalyst for Synthesis of Pyran-Annulated Heterocyclic Scaffolds and Pyrido [2, 3-d] Pyrimidines,” Journal of Molecular Liquids 307, (2020) : 112989. (g) G. Brahmachari, and B. Banerjee, “Facile and One-Pot Access to Diverse and Densely Functionalized 2-Amino-3-Cyano-4H-Pyrans and Pyran-Annulated Heterocyclic Scaffolds via an Eco-Friendly Multicomponent Reaction at Room Temperature Using Urea as a Novel Organo-Catalyst,” ACS Sustainable Chemistry & Engineering 2, no. 3 (2014) : 411–22. (h) K. S. Pandit, P. V. Chavan, U. V. Desai, M. A. Kulkarni, and P. P. Wadgaonkar, “Tris-Hydroxymethylaminomethane (THAM): a Novel Organocatalyst for a Environmentally Benign Synthesis of Medicinally Important Tetrahydrobenzo [b] Pyrans and Pyran-Annulated Heterocycles,” New Journal of Chemistry 39, no. 6 (2015) : 4452–63. (i) H. Kiyani, and F. Ghorbani, “Efficient Tandem Synthesis of a Variety of Pyran-Annulated Heterocycles, 3,4-Disubstituted Isoxazol-5(4H)-Ones, and α,β-Unsaturated Nitriles Catalyzed by Potassium Hydrogen Phthalate in Water,” Research on Chemical Intermediates 41, no. 10 (2015) : 7847–82. (j) N. Hazeri, M. T. Maghsoodlou, M. R. Mousavi, J. Aboonajmi, and M. Safarzaei, “Potassium Sodium Tartrate as a Versatile and Efficient Catalyst for the One-Pot Synthesis of Pyran Annulated Heterocyclic Compounds in Aqueous Media,” Research on Chemical Intermediates 41, no. 1 (2015) : 169–74. (k) I. Devi, and P. J. Bhuyan, “Sodium Bromide Catalysed One-Pot Synthesis of Tetrahydrobenzo[b]Pyrans via a Three-Component Cyclocondensation under Microwave Irradiation and Solvent Free Conditions,” Tetrahedron Letters 45, no. 47 (2004) : 8625–7. (l) T.-S. Jin, A.-Q. Wang, X. Wang, J.-S. Zhang, and T.-S. Li, “A Clean One-Pot Synthesis of Tetrahydrobenzo [b] Pyran Derivatives Catalyzed by Hexadecyltrimethyl Ammonium Bromide in Aqueous Media,” Synlett 2004, no. 05 (2004) : 0871–3. (m) S. Abdolmohammadi, and S. Balalaie, “Novel and Efficient Catalysts for the One-Pot Synthesis of 3, 4-Dihydropyrano [c] Chromene Derivatives in Aqueous Media,” Tetrahedron Letters 48, no. 18 (2007) : 3299–303. (n) M. Seifi, and H. Sheibani, “High Surface Area MgO as a Highly Effective Heterogeneous Base Catalyst for Three-Component Synthesis of Tetrahydrobenzopyran and 3, 4-Dihydropyrano [c] Chromene Derivatives in Aqueous Media,” Catalysis Letters 126, no. 3-4 (2008) : 275–9. (o) M. Bihani, P. P. Bora, G. Bez, and H. Askari, “Amberlyst A21 Catalyzed Chromatography-Free Method for Multicomponent Synthesis of Dihydropyrano [2,3-c] Pyrazoles in Ethanol,” ACS Sustainable Chemistry & Engineering 1, no. 4 (2013) : 440–7. (p) M. M. Heravi, B. A. Jani, F. Derikvand, F. F. Bamoharram, and H. A. Oskooie, “Three Component, One-Pot Synthesis of Dihydropyrano [3,2-c] Chromene Derivatives in the Presence of H6P2W18O62·18H2O as a Green and Recyclable Catalyst,” Catalysis Communications 10, no. 3 (2008) : 272–5. (q) M. Khoobi, L. Ma’mani, F. Rezazadeh, Z. Zareie, A. Foroumadi, A. Ramazani, and A. Shafiee, “One-Pot Synthesis of 4H-Benzo [b] Pyrans and Dihydropyrano [c] Chromenes Using Inorganic-Organic Hybrid Magnetic Nanocatalyst in Water,” Journal of Molecular Catalysis A: Chemical 359, (2012) : 74–80.
  • (a) Z. E. Kandeel, A. M. Farag, M. R. Shaaban, and M. H. Elnagdi, “Studies with 1, 3‐Diketones: A Convenient Synthesis of Some Tetrahydro‐4H‐Benzopyran and Tetrahydroquinoline Derivatives,” Heteroatom Chemistry 7, no. 1 (1996) : 35–8. (b) B. Wu, X. Gao, Z. Yan, W.-X. Huang, and Y.-G. Zhou, “Enantioselective Synthesis of Functionalized 2-Amino-4H-Chromenes via the o-Quinone Methides Generated from 2-(1-Tosylalkyl) Phenols,” Tetrahedron Letters 56, no. 29 (2015) : 4334–8.
  • (a) A. Molla, E. Hossain, and S. Hussain, “Multicomponent Domino Reactions: borax Catalyzed Synthesis of Highly Functionalised Pyran-Annulated Heterocycles,” RSC Advances 3, no. 44 (2013) : 21517–23. (b) A. Molla, and S. Hussain, “Borax Catalyzed Domino Reactions: synthesis of Highly Functionalised Pyridines, Dienes, Anilines and Dihydropyrano [3,2-c] Chromenes,” RSC Adv. 4, no. 56 (2014) : 29750–8. (c) A. Molla, and S. Hussain, “Base Free Synthesis of Iron Oxide Supported on Boron Nitride for the Construction of Highly Functionalized Pyrans and Spirooxindoles,” RSC Advances 6, no. 7 (2016) : 5491–502. (d) A. Molla, S. Ranjan, M. S. Rao, A. H. Dar, M. Shyam, V. Jayaprakash, and S. Hussain, “Borax Catalysed Domino Synthesis of Highly Functionalised Spirooxindole and Chromenopyridine Derivatives: X‐Ray Structure, Hirshfeld Surface Analysis and Molecular Docking Studies,” ChemistrySelect 3, no. 30 (2018) : 8669–77. (e) M. S. Rao, S. Sarkar, and S. Hussain, “Microwave-Assisted Synthesis of 3-Aminoarylquinolines from 2-Nitrobenzaldehyde and Indole via SnCl2-Mediated Reduction and Facile Indole Ring Opening,” Tetrahedron Letters 60, no. 18 (2019) : 1221–5.
  • (a) S. T. Roudsari, K. Rad‐Moghadam, and H. Hosseinjani‐Pirdehi, “Dual Complex of Amylose with Iodine and Magnetite Nano‐Crystallites: Enhanced Superparamagnetic and Catalytic Performance for Synthesis of Spiro‐Oxindoles,” Applied Organometallic Chemistry 33, 8 (2019) : e4993. (b) S. Razikazemi, K. Rad-Moghadam, and S. Toorchi-Roudsari, “A Nano-Composite of Magnetite and Hot-Water-Soluble Starch: A Cooperation Resulting in an Amplified Catalytic Activity on Water,” New Journal of Chemistry 42, no. 15 (2018) : 12476–85.
  • (a) K. Niknam, and A. Jamali, “Silica-Bonded N-Propylpiperazine Sodium n-Propionate as Recyclable Basic Catalyst for Synthesis of 3,4-Dihydropyrano [c] Chromene Derivatives and Biscoumarins,” Chinese Journal of Catalysis 33, no. 11-12 (2012) : 1840–9. (b) M. Makvandi, D. F. Abiar, A. Malekzadeh, M. Baghernejad, and K. Niknam, “Silica-Bonded n-Propyltriethylene-Tetramine as a Recyclable Solid Base Catalyst for the Synthesis of 2-Amino-5-Oxo-5,6,7,8-Tetrahydro-4H-Chromenes,” Iranian Journal of Catalysis 3, no. 4 (2013) : 221–8. (c) D. Azarifar, O. Badalkhani, Y. Abbasi, and M. Hasanabadi, “Urea-Functionalized Silica-Coated Fe3-xTixO4 Magnetic Nanoparticles: As Highly Efficient and Recyclable Heterogeneous Nanocatalyst for Synthesis of 4H-Chromene and 1H-Pyrazolo [1,2-b] Phthalazine-5,10-Dione Derivatives,” Journal of the Iranian Chemical Society 14, no. 2 (2017) : 403–18.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.