197
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Bio-Fe3O4-MNPs Promoted Green Synthesis of Pyrido[2,1-a]isoquinolines and Pyrido[1,2-a]quinolines: Study of Antioxidant and Antimicrobial Activity

ORCID Icon, &
Pages 3908-3923 | Received 13 Dec 2020, Accepted 11 Jan 2021, Published online: 04 Feb 2021

References

  • J. Tao and R. Kazlauskas, Biocatalysis for Green Chemistry and Chemical Process Development, edited by Junhua (Alex) Tao and Romas Joseph Kazlauskas, (John Wiley & Sons, 2011), 496.
  • J. Zhu and H. Bienaymé, Multicomponent Reactions (Veinheim: Wiley-VCH, 2005).
  • R. V. Orru and E. Ruijter, Synthesis of Heterocycles via Multicomponent Reactions II (Berlin: Springer, 2010).
  • A. Domling, W. Wang, and K. Wang, “Chemistry and Biology of Multicomponent Reactions,” Chemical Reviews 112, no. 6 (2012): 3083–135.
  • (a) S. Markmee, S. Ruchirawat, V. Prachyawarakorn, K. Ingkaninan, and N. Khorana, “Isoquinoline Derivatives as Potential Acetylcholinesterase Inhibitors,” Bioorganic & Medicinal Chemistry Letters 16, no. 8 (2006): 2170. (b) V. G. Kartsev, “Natural Compounds in Drug Discovery. Biological Activity and New Trend in the Chemistry of Isoquinoline Alkaloides,” Medicinal Chemistry Research 13 (2004): 325–36. (c) P. Giri and K. G. Suresh, Mini-Reviews in Medicinal Chemistry 10 (2010): 568.
  • (a) M. Tillhon, L. M. G. Ortiz, P. Lombardi, and A. I. Scovassi, “Berberine: New Perspectives for Old Remedies,” Biochemical Pharmacology 84, no. 10 (2012): 1260–67. (b) J. Guo, S. B. Wang, T. Y. Yuan, Y. J. Wu, Y. Yan, L. Li, and G. H. Du, “Coptisine Protects Rat Heart Against Myocardial Ischemia/Reperfusion Injury by Suppressing Myocardial Apoptosis and Inflammation,” Atherosclerosis 231 (2013): 384. (c) P. Giri, M. Hossain, and G. S. Kumar, “RNA Specific Molecules: Cytotoxic Plant Alkaloid Palmatine Binds Strongly to Poly(A),” Bioorganic & Medicinal Chemistry Letters 16 (2006): 2364.
  • (a) M. Chrzanowska and M. D. Rozwadowska, “Asymmetric Synthesis of Isoquinoline Alkaloids,” Chemical Reviews, 104, no. 7 (2004): 3341–70. (b) M. Chrzanowska, A. Grajewska, and M. D. Rozwadowska, “Asymmetric Synthesis of Isoquinoline Alkaloids: 2004–2015,” Chemical Reviews 116 (2016): 12369–465.
  • Zheng Xiang, Tuoping Luo, Kui Lu, Jiayue Cui, Xiaomeng Shi, Reza Fathi, Jiahua Chen, and Zhen Yang, “Concise Synthesis of Isoquinoline via the Ugi and Heck Reactions,” Organic Letters 6, no. 18 (2004): 3155–8.
  • T. Ngouansavanh and J. Zhu, “IBX-Mediated Oxidative Ugi-Type Multicomponent Reactions: application to the N and C1 Functionalization of Tetrahydroisoquinoline,” Angewandte Chemie (International ed. in English) 46, no. 30 (2007): 5775–8.
  • Chao Che, Bo Yang, Xianlong Jiang, Taofeng Shao, Zhixiong Yu, Chuanye Tao, Song Li, and Shuo Lin, “Syntheses of Fused Tetracyclic Quinolines via Ugi-Variant MCR and Pd-Catalyzed Bis-Annulation,” The Journal of Organic Chemistry 79, no. 1 (2014): 436–40.
  • Y. Chen and G. Feng, “Visible Light Mediated sp(3) C-H bond Functionalization of N-aryl-1,2,3,4-tetrahydroisoquinolines via Ugi-type Three-component Reaction,”Organic & Biomolecular Chemistry 13, no. 14 (2015): 4260–5.
  • T. Masao, Y. Okamoto, T. Kikuchi, K. Osaki, M. Nishikawa, K. Kamiya, Y. Sasaky, K. Matoba, and K. Goto, “Synthesis and Evaluation of Water-Soluble Non-Prodrug Analogs of Docetaxel Bearing sec-Aminoethyl Group at the C-10 Position,” Chemical and Pharmaceutical Bulletin 19 (1971): 770–6.
  • J. Kunitomo and M. Satoh, “Structure of Menisporphine: A New Type of Isoquinoline Alkaloid,” Chemical & Pharmaceutical Bulletin 30, no. 7 (1982): 2659–60.
  • X. Zhang, W. Ye, S. Zhao, and C.-T. Che, “Isoquinoline and Isoindole Alkaloids from Menispermum dauricum,” Phytochemistry 65, no. 7 (2004): 929–32.
  • Timothy R. Kane, Cuong Q. Ly, Daphne E. Kelly, and Jeffrey M. Dener, “Solid-Phase Synthesis of 1,2,3,4-Tetrahydroisoquinoline Derivatives Employing Support-Bound Tyrosine Esters in the Pictet-Spengler Reaction,” Journal of Combinatorial Chemistry 6, no. 4 (2004): 564–72.
  • Z. Czarnocki, D. Suh, D. B. MacLean, P. G. Hultin, and W. A. Szarek, “Enantioselective Synthesis of l-Substituted Tetrahydroisoquinoline-1-Carboxylic Acids,” Canadian Journal of Chemistry 70, no. 5 (1992): 1555–61.
  • E. J. Corey and D. Gin, “A Convergent Enantioselective Synthesis of the Tetrahydroisoquinoline Unit in the Spiro Ring of Ecteinascidin 743,” Tetrahedron Letters 37, no. 40 (1996): 7163–6.
  • J. S. Yadav, B. V. S. Reddy, K. S. Raj, and A. R. Prasad, “Room Temperature Ionic Liquids Promoted Three-Component Coupling Reactions: A Facile Synthesis of Cis-Isoquinolonic Acids,” Tetrahedron 59, no. 10 (2003): 1805–9.
  • Z. Zalan, T. A. Martinek, L. Lazar, and F. Fulop, “Synthesis and Conformational Analysis of 1,3,2-Diazaphosphorino[6,1-a]Isoquinolines, a New Ring System,” Tetrahedron 59, no. 46 (2003): 9117–25.
  • J. D. Scott and R. M. Williams, “Chemistry and Biology of the Tetrahydroisoquinoline Antitumor Antibiotics,” Chemical Reviews 102, no. 5 (2002): 1669–730.
  • P. Craig, F. Nabenhauer, P. Williams, E. Macko, and J. Toner, “Tetrahydroisoquinolines. I. 1-Alkyl-6,7-Dihydroxy-1,2,3,4-Tetrahydroisoquinolines 1,” Journal of the American Chemical Society 74, no. 5 (1952): 1316–7.
  • E. Yamato, M. Hirakura, and S. Sugasawa, “Synthesis of 6,7-Dihydrox-1,2,3,4-Tetrahydroisoquinoline Derivatives,” Tetrahedron 22 (1966): 129–34.
  • M. Ohkubo, A. Kuno, K. Katsuta, Y. Ueda, K. Shirakawa, H. Nakanishi, I. Nakanishi, T. Kinoshita, and H. Takasugi, “Studies on Cerebral Protective Agents. IX. Synthesis of Novel 1,2,3,4-Tetrahydroisoquinolines as N-methyl-D-aspartate Antagonists,” Chemical & Pharmaceutical Bulletin 44, no. 1 (1996): 95–102.
  • M. Hirobe, S. Ohta, and Y. Masukawa, WIPO Patent Application WO9736588, Kind Code: A2, (1997).
  • M. Francisco, A. L. Nasser, and L. Lopes, “Tetrahydroisoquinoline Alkaloids and 2-Deoxyribonolactones from Aristolochia arcuata,” Phytochemistry 62, no. 8 (2003): 1265–70.
  • H. Kubota, T. Watanabe, A. Kakefuda, N. Masuda, K. Wada, N. Ishii, S. Sakamoto, and S. Tsukamoto, “Synthesis and Pharmacological Evaluation of N-Acyl-1,2,3,4-Tetrahydroisoquinoline Derivatives as Novel Specific Bradycardic Agents,” Bioorganic & Medicinal Chemistry 12, no. 5 (2004): 871–82.
  • Yoshie Horiguchi, Hirokazu Kodama, Masayoshi Nakamura, Tsuyoshi Yoshimura, Kaori Hanezi, Hiroko Hamada, Toshiaki Saitoh, and Takehiro Sano, “A Convenient Synthesis of 1,1-Disubstituted 1,2,3,4-Tetrahydroisoquinolines via Pictet-Spengler Reaction Using Titanium(IV) Isopropoxide and Acetic-Formic Anhydride,” Chemical & Pharmaceutical Bulletin 50, no. 2 (2002): 253–7.
  • H. Kumpaty, S. Bhattacharyya, E. Rehr, and A. Gonzalez, “Selective Access to Secondary Amines by a Highly Controlled Reductive Mono-N-Alkylation of Primary Amines,” Synthesis no. 14 (2003): 2206–10.
  • A. Hegedüs and Z. Hell, “One-Step Preparation of 1-Substituted Tetrahydroisoquinolines via the Pictet–Spengler Reaction Using Zeolite Catalysts,” Tetrahedron Letters 45, no. 46 (2004): 8553–5.
  • (a) C. W. Lim, O. Tissot, A. Mattison, M. W. Hooper, J. M. Brown, A. R. Cowley, D. I. Hulmes, and A. Blacker, “Practical Preparation and Resolution of 1-(2′-Diphenylphosphino-1′-naphthyl)isoquinoline: A Useful Ligand for Catalytic Asymmetric Synthesis,” Organic Process Research & Development 7, no. 3 (2003): 379–84. (b) B. A. Sweetman, H. Muller-Bunz, and P. J. Guiry, “Synthesis, Resolution and Racemisation Studies of New Tridentate Ligands for Asymmetric Catalysis,” Tetrahedron Letters 46 (2005): 4643–46. (c) F. Durola, J.-P. Sauvage, and O. S. Wenger, “Sterically Non-hindering Endocyclic Ligands of the Bi-isoquinoline Family,” Chemical Communications (2006): 171–73.
  • S. Hoogewerf and W. A. van Dorp, “Sur un isomere de la quinoleine' (on an isomer of quinoline), Recueil des Travaux Chemiques des Pays-Bas,” Collection of Work in Chemistry in the Netherlands, 4, no. 4 (1885): 125–9.
  • S. Rostamizadeh, M. Nojavan, R. Aryan, E. Isapoor, and M. Azad, “Amino Acid-Based Ionic Liquid Immobilized on α-Fe2O3-MCM-41: An Efficient Magnetic Nanocatalyst and Recyclable Reaction Media for the Synthesis of Quinazolin-4(3H)-One Derivatives,” Journal of Molecular Catalysis A: Chemical 374-375 (2013): 102–10.
  • D. Beydoun, R. Amal, G. Low, and S. McEvoy, “Characterization of Nanosized Partly Crystalline Photocatalysts,” Journal of Nanoparticle Research 1, no. 4 (1999): 439–58.
  • (a) B. Halliwell, “Antioxidant Defence Mechanisms: From the Beginning to the End (of the Beginning),” Free Radical Research, 31, no. 4 (1999): 261–72. (b) F. Ahmadi, M. Kadivar, and M. Shahedi, “Antioxidant Activity of Kelussia odoratissima Mozaff in Model and Food Systems,” Food Chemistry 105 (2007): 57–64.
  • Mark A. Babizhayev, Anatoly I. Deyev, Valentina N. Yermakova, Igor V. Brikman, and Johan Bours, “Lipid Peroxidation and Cataracts: N-Acetylcarnosine as a Therapeutic Tool to Manage Age-Related Cataracts in Human and in Canine Eyes,” Drugs in R&D 5, no. 3 (2004): 125–39.
  • L. Liu and M. Meydani, “Combined Vitamin C and E Supplementation Retards Early Progression of Arteriosclerosis in Heart Transplant Patients,” Nutrition Review 60 (2002): 368–71.
  • a) Z. S. Hossaini, D. Zareyee, F. Sheikholeslami-Farahani, S. Vaseghi, and A. Zamani, “ZnO-NR as the Efficient Catalyst for the Synthesis of New Thiazole and Cyclopentadienone Phosphonate Derivatives in Water,” Heteroatom Chemistry 28, no. 2 (2017): e21362. (b) F. Rostami-charati, Z. S. Hossaini, D. Zareyee, S. Afrashteh, and M. Hosseinzadeh, “ZnO‐Nanorods as an Efficient Catalyst for the Synthesis of 1,3‐Thiazolidine Derivatives by Aqueous Multicomponent Reactions of Isothiocyanates,” Journal of Heterocyclic Chemistry 54 (2017): 1937–42.
  • a) F. Rostami-Charati, Z. S. Hossaini, R. Rostamian, A. Zamani, and M. Abdoli, “Green Synthesis of Indol-2-one Derivatives from N-alkylisatins in the Presence of KF/Clinoptilolite Nanoparticles,” Chemistry of Heterocyclic Compounds, 53, no. 4 (2017): 480–83. (b) S. Rezayati, F. Sheikholeslami-Farahani, Z. S. Hossaini, R. Hajinasiri, and S. Afshari Sharif Abad, “Regioselctive Thiocyanation of Aromatic and Heteroaromatic Compounds Using a Novel Bronsted Acidic Ionic Liquid,” Combinatorial Chemistry & High Throughput Screening 9 (2016): 720–27.
  • (a) I. Yavari, M. Sabbaghan, and Z. S. Hossaini, “Proline-Promoted Efficient Synthesis of 4-Aryl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromene-2,5-diones in Aqueous Media,” Synlett (2008): 1153–4. (b) F. Tavakolinia, T. Baghipour, Z. S. Hossaini, D. Zareyee, and M. A. Khalilzadeh, “Antiproliferative Activity of Novel Thiopyran Analogs on MCF-7 Breast and HCT-15 Colon Cancer Cells: Synthesis, Cytotoxicity, Cell Cycle Analysis, and DNA-Binding,” Nucleic Acid Therapeutics 22 (2012): 265–70.
  • a) I. Yavari, S. Seyfi, Z. S. Hossaini, M. Sabbaghan, and F. Shirgahi-Talari, “Efficient Synthesis of 2-Thioxo-1,3-thiazolanes from Primary Amines, CS2, and Ethyl Bromopyruvate,” Monatshefte für Chemie-Chemical Monthly 139 (2008): 1479–82. (b) M. A. Khalilzadeh, Z. S. Hossaini, M. M. Baradarani, and A. Hasannia,” A Novel Isocyanide-based Three-component Reaction: A Facile Synthesis of Substituted 2H-pyran-3, 4-dicarboxylates. Tetrahedron 66 (2010): 8464–7. (c) R. Hajinasiri, Z. S. Hossaini, and F. Rostami‐Charati, “Efficient Synthesis of α‐aminophosphonates via One‐pot Reactions of Aldehydes, Amines, and Phosphates in Ionic Liquid,” Heteroatom Chemistry 22 (2011): 625–9.
  • a) F. Rostami-Charati, Z. S. Hossaini, and M. R. Hosseini-Tabatabaei, “A Simple Synthesis of Oxaphospholes,” Phosphorus, Sulfur, and Silicon and the Related Elements 186 (2011): 1443–8. (b) S. Rezayati, F. Sheikholeslami-Farahani, Z. S. Hossaini, and R. Hajinasiri,” Regioselctive Thiocyanation of Aromatic and Heteroaromatic Compounds using a Novel Bronsted Acidic Ionic Liquid,” Combinatorial Chemistry & High Throughput Screening 19 (2016): 720–7. (c) F. Rostami-Charati, Z. S. Hossaini, F. Sheikholeslami-Farahani, and Z. Aziz,” Synthesis of 9H-furo [2, 3-f] Chromene Derivatives by Promoting ZnO Nanoparticles,” Combinatorial Chemistry & High Throughput Screening 18 (2015): 872–80.
  • I. Yavari, M. Ghazanfarpour-Darjani, Z. S. Hossaini, M. Sabbaghan, and N. Hosseini, “Methoxide Ion Promoted Efficient Synthesis of 1,3-Oxathiolane-2-Thiones by Reaction of Oxiranes and Carbon Disulfide,” Synlett 2008, no. 6 (2008): 889–91.
  • I. Yavari, M. Nematpour, and Z. S. Hossaini, “Ph 3 P-Mediated One-Pot Synthesis of Functionalized 3, 4-Dihydro-2 H-1, 3-Thiazines from N, N′-Dialkylthioureas and Activated Acetylenes in Water,” Monatshefte für Chemie - Chemical Monthly 141, no. 2 (2010): 229–32.
  • I. Yavari, Z. S. Hossaini, S. Souri, and S. Seyfi, “Diastereoselective Synthesis of Fused [1,3]thiazolo[1,3]oxazins and [1,3]oxazino[2,3-b][1,3]benzothiazoles,”Molecular Diversity 13, no. 4 (2009): 439–43.
  • I. Yavari and Z. S. Hossaini, “Synthesis of Fused α-Methylene-γ-Butyrolactone Derivatives through Pyridine-Induced Addition of Phenols to Dimethyl Acetylenedicarboxylate,” Tetrahedron Letters 47, no. 26 (2006): 4465–8.
  • M. Hosseini-Sarvari and M. Tavakolian, “Preparation, Characterization, and Catalysis Application of Nano-Rods Zinc Oxide in the Synthesis of 3-Indolyl-3-Hydroxy Oxindoles in Water,” Applied Catalysis A: General 441-442 (2012): 65–71.
  • M. Hosseini-Sarvari, H. Sharghi, and S. Etemad, “Nanocrystalline ZnO for Knoevenagel Condensation and Reduction of the Carbon, Carbon Double Bond in Conjugated Alkenes,” Helvetica Chimica Acta 91, no. 4 (2008): 715–24.
  • K. Shimada, K. Fujikawa, K. Yahara, and T. Nakamura, “Antioxidative Properties of Xanthan on the Autoxidation of Soybean Oil in Cyclodextrin Emulsion,” Journal of Agricultural and Food Chemistry 40, no. 6 (1992): 945–8.
  • G. C. Yen and P. D. Duh, “Scavenging Effect of Methanolic Extracts of Peanut Hulls on Free-Radical and Active-Oxygen Species,” Journal of Agricultural and Food Chemistry 42, no. 3 (1994): 629–32.
  • A. Yildirim, A. Mavi, and A. A. Kara, “Determination of Antioxidant and Antimicrobial Activities of Rumex crispus L. extracts,” Journal of Agricultural and Food Chemistry 49, no. 8 (2001): 4083–9.
  • A. R. Saundane and M. K. Nandibeoor, “Synthesis, Characterization, and Biological Evaluation of Schiff Bases Containing Indole Moiety and Their Derivatives,” Monatshefte für Chemie - Chemical Monthly 146, no. 10 (2015): 1751–61.
  • Abdul Mueed Bidchol, A. Wilfred, P. Abhijna, and R. Harish, “Free Radical Scavenging Activity of Aqueous and Ethanolic Extract of Brassica oleracea L. var. italic,” Food and Bioprocess Technology 4, no. 7 (2011): 1137–43.
  • F. Shafaei, S. E. Babaei, A. S. Shahvelayati, and F. Honarmand Janatabadi, “Biosynthesis of Fe3O4‐Magnetic Nanoparticles Using Clover Leaf Aqueous Extract: Green Synthesis of 1,3‐Benzoxazole Derivatives,” Journal of the Chinese Chemical Society 67, no. 5 (2020): 891–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.