105
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A Facile Synthesis and Antitumor Activity of Novel 2-Aryl-2,3- dihydro-1H-pyrrolo[3,4-b]quinoxalin-1-ones

, , , , , , , & show all
Pages 4066-4077 | Received 06 Dec 2020, Accepted 16 Jan 2021, Published online: 04 Feb 2021

References

  • A. Stierle, J. Hershenhorn, and G. Strobel, “Zinniol-Related Phytotoxins from Alternaria Cichorii,” Phytochemistry 32, no. 5 (1993): 1145–9.
  • M. Ono, Y. Nishida, C. Masuoka, J.-C. Li, M. Okawa, T. Ikeda, and T. Nohara, “Lignan Derivatives and a Norditerpene from the Seeds of Vitex Negundo,” Journal of Natural Products 67, no. 12 (2004): 2073–5.
  • V. Ventafridda, G. Martino, V. Mandelli, and A. Emanueli, “Indoprofen, a New Analgesic and anti-Inflammatory Drug in Cancer Pain,” Clinical Pharmacology and Therapeutics 17, no. 3 (1975): 284–9.
  • J. B. Bartlett, K. Dredge, and A. G. Dalgleish, “The Evolution of Thalidomide and Its IMiD Derivatives as Anticancer Agents,” Nature Reviews. Cancer 4, no. 4 (2004): 314–22.
  • J. C. Breytenbach, S. van Dyk, I. van den Heever, S. M. Allin, C. C. Hodkinson, C. J. Northfield, and M. I. Page, “Synthesis and Antimicrobial Activity of Some Isoindolin-1-Ones Derivatives,” Bioorganic & Medicinal Chemistry Letters 10, no. 15 (2000): 1629–31.
  • P. V. Khang, L. Hu, and L. Ma, “One-Pot Synthesis of Isoindolin-1-Ones with Thiamine Hydrochloride (VB1) as a Catalyst and Their Inhibitory Activity against Cancer Cell Lines,” Polycyclic Aromatic Compounds 40, no. 1 (2020): 33–9.
  • T. Nishiyama, S. Chiba, and Y. Yamada, “Antinociceptive Property of Intrathecal and Intraperitoneal Administration of a Novel Water-Soluble Isoindolin-1-One Derivative, JM 1232 (-) in Rats,” European Journal of Pharmacology 596, no. 1-3 (2008): 56–61.
  • Z. P. Zhuang, M. P. Kung, M. Mu, and H. F. Kung, “Isoindol-1-One Analogues of 4-(2'-Methoxyphenyl)-1-[2'-[N-(2"-Pyridyl)-p-Iodobenzamido]ethyl]pipera Zine (p-MPPI) as 5-HT1A Receptor Ligands,” Journal of Medicinal Chemistry 41, no. 2 (1998): 157–66.
  • Y. Zhou, P. Chen, X. Lv, J. Niu, Y. Wang, M. Lei, and L. Hu, “A Facile and Efficient Method for the Synthesis of N-Substituted Isoindolin-1-One Derivatives under Pd(OAc)2/HCOOH System,” Tetrahedron Letters 58, no. 23 (2017): 2232–5.
  • D. M. Shacklady-McAtee, S. Dasgupta, and M. P. Watson, “Nickel(0)-Catalyzed Cyclization of N-Benzoylaminals for Isoindolinone Synthesis,” Organic Letters 13, no. 13 (2011): 3490–3.
  • P. Thapa, E. Corral, S. Sardar, B. S. Pierce, and F. W. Foss, Jr. “Isoindolinone Synthesis: Selective Dioxane-Mediated Aerobic Oxidation of Isoindolines,” The Journal of Organic Chemistry 84, no. 2 (2019): 1025–34.
  • L. Bonilla-Ramirez, A. Rios, M. Quiliano, G. Ramirez-Calderon, I. Beltrán-Hortelano, J. F. Franetich, L. Corcuera, M. Bordessoulles, A. Vettorazzi, A. López de Cerain, et al. “Novel Antimalarial Chloroquine- and Primaquine-Quinoxaline 1,4-di-N-Oxide Hybrids: Design, Synthesis, Plasmodium Life Cycle Stage Profile, and Preliminary Toxicity Studies,” European Journal of Medicinal Chemistry 158 (2018): 68–81.
  • D. A. E. Issa, N. S. Habib, and A. E. A. Wahab, “Design, Synthesis and Biological Evaluation of Novel 1,2,4-Triazolo and 1,2,4-Triazino[4,3-a]Quinoxalines as Potential Anticancer and Antimicrobial Agents,” MedChemComm 6, no. 1 (2015): 202–11.
  • T. Besharati-Seidani, A. Keivanloo, B. Kaboudin, A. Yoshida, and T. Yokomatsu, “Regioselective Synthesis of 2,3-Disubstituted 1-Alkyl Pyrrolo[2,3-b]Quinoxalines through Palladium-Catalyzed Heck Reaction of Chalcones and Evaluation of Their Anti-Bacterial Activities,” Tetrahedron 74, no. 19 (2018): 2350–8.
  • Q.-Q. Liu, K. Lu, H.-M. Zhu, S.-L. Kong, J.-M. Yuan, G.-H. Zhang, N.-Y. Chen, C.-X. Gu, C.-X. Pan, D.-L. Mo, et al. “Identification of 3-(Benzazol-2-yl)quinoxaline Derivatives as Potent Anticancer Compounds: Privileged Structure-based Design, Synthesis, and Bioactive Evaluation in Vitro and in Vivo,” European Journal of Medicinal Chemistry 165 (2019) : 293–308.
  • Z. Gu, Y. Li, S. Ma, S. Li, G. Zhou, S. Ding, J. Zhang, S. Wang, and C. Zhou, “Synthesis, Cytotoxic Evaluation and DNA Binding Study of 9-Fluoro-6H-Indolo[2,3-b]Quinoxaline Derivatives,” RSC Advances 7, no. 66 (2017): 41869–79.
  • A. Keivanloo, M. Bakherad, A. Rahimi, and S. A. N. Taheri, “One-Pot Synthesis of 1,2-Disubstituted Pyrrolo[2,3-b]Quinoxalines via Palladium-Catalyzed Heteroannulation in Water,” Tetrahedron Letters 51, no. 18 (2010): 2409–12.
  • M. Hajri, M. A. Esteve, O. Khoumeri, R. Abderrahim, T. Terme, M. Montana, and P. Vanelle, “Synthesis and Evaluation of in Vitro Antiproliferative Activity of New Ethyl 3-(aryl ethynyl)quinoxaline-2-carboxylate and Pyrido[4,3-b]quinoxalin-1(2H)-one Derivatives,” European Journal of Medicinal Chemistry 124 (2016): 959–66.
  • T. Kaushal, G. Srivastava, A. Sharma, and A. S. Negi, “An Insight into Medicinal Chemistry of Anticancer Quinoxalines,” Bioorganic & Medicinal Chemistry 27, no. 1 (2019): 16–35.
  • M. Montana, F. Mathias, T. Terme, and P. Vanelle, “Antitumoral Activity of Quinoxaline Derivatives: A Systematic Review,” European Journal of Medicinal Chemistry 163 (2019): 136–47.
  • C. Viegas-Junior, A. Danuello, V. S. Bolzani, E. J. Barreiro, and C. A. M. Fraga, “Molecular Hybridization: A Useful Tool in the Design of New Drug Prototypes,” Current Medicinal Chemistry 14 (2007): 1829–52.
  • Y. Li, S. Dong, H. Qin, B. Tang, W. Gao, and Y. Chen, “A Facile Synthesis and M. tuberculosis Leucyl-tRNA Synthetase Inhibitory Activity of Novel 3-Arylvinyl Quinoxaline-2-Carboxylic Acids,” Chinese Journal of Organic Chemistry 40, no. 9 (2020): 2817–26.
  • Y. Li, B. Tang, S. Dong, W. Gao, W. Jiang, and Y. Chen, “Solvent-Free Synthesis and in Vitro Antitumor Activity of a New Class of (Z)-3-Arylidene-1H-pyrano[3,4-b]quinolin-4(3H)-ones,” ChemistrySelect 5, no. 9 (2020): 2746–52.
  • Y. Li, Q. Xu, Z. Li, W. Gao, and Y. Chen, “Application of 2,4‑Bis(Halomethyl)Quinoline: Synthesis and Biological Activities of 2,4-Bis(benzofuran-2-yl)- and 2,4-Bis(aroxymethyl) Quinolines,” Molecular Diversity 24, no. 1 (2020): 167–78.
  • Y. Li, B. Tang, S. Dong, H. Qin, W. Gao, and Y. Chen, “A Facile Synthesis and Antibacterial Activity of Novel Quinoxaline-Benzofuran Hybrids,” Heterocycles 100 (2020): 451–62.
  • M. Ordóñez, G. D. Tibhe, A. Zamudio-Medina, and J. L. Viveros-Ceballos, “An Easy Approach for the Synthesis of N-Substituted Isoindolin-1-Ones,” Synthesis 2012, no. 04 (2012): 569–74.
  • D. Marosvölgyi-Haskó, A. Takács, Z. Riedl, and L. Kollár, “High-Yielding Synthesis of 1-Isoindolinone Derivatives via Palladium-Catalysed Cycloaminocarbonylation,” Tetrahedron 67, no. 5 (2011): 1036–40.
  • G. López-Valdez, S. Olguín-Uribe, A. Millan-Ortíz, R. Gamez-Montano, and L. D. Miranda, “Convenient Access to Isoindolinones via Carbamoyl Radical Cyclization. Synthesis of Cichorine and 4-Hydroxyisoindolin-1-One Natural Products,” Tetrahedron 67, no. 14 (2011): 2693–701.
  • M. Lamblin, A. Couture, E. Deniau, and P. Grandclaudon, “A Concise and Efficient Synthesis of Isoindolin-1-Ones. New Synthetic Approach to the Polycyclic Framework of Vitedoamine A,” Tetrahedron 63, no. 12 (2007): 2664–9.
  • J. Wan, B. Wu, and Y. Pan, “Novel One-Step Synthesis of 2-Carbonyl/Thiocarbonyl Isoindolinones and Mechanistic Disclosure on the Rearrangement Reaction of o-Phthalaldehyde with Smide/Thioamide Analogs,” Tetrahedron 63, no. 38 (2007): 9338–44.
  • R. J. Huntley, M. Gurram, J. R. Walker, D. M. Jenkins, E. J. Robé, and F. Ahmed, “Synthesis of Isoindolinones via Inverse-Electron Demand Diels-Alder Cycloadditions,” Tetrahedron Letters 55, no. 14 (2014): 2286–9.
  • A. Kiriazis, I. B. Aumüller, and J. Yli-Kauhaluoma, “Synthesis of 4-Aminoguaiazulene and Its δ-Lactam Derivatives,” Tetrahedron Letters 52, no. 11 (2011): 1151–3.
  • S. Y. Abbas, R. A. K. Al-Harbi, and M. A. M. S. El-Sharief, “Synthesis and Anticancer Activity of Thiourea Derivatives Bearing a Benzodioxole Moiety with EGFR Inhibitory Activity, Apoptosis Assay and Molecular Docking Study,” European Journal of Medicinal Chemistry 198 (2020): 112363–72.
  • H. A. M. El-Sherief, B. G. M. Youssif, S. N. A. Bukhari, M. Abdel-Aziz, and H. M. Abdel-Rahman, “Novel 1,2,4-Triazole Derivatives as Potential Anticancer Agents: Design, Synthesis, Molecular Docking and Mechanistic Studies,” Bioorganic Chemistry 76 (2018): 314–25.
  • Y. Tu, Y. OuYang, S. Xu, Y. Zhu, G. Li, C. Sun, P. Zheng, and W. Zhu, “Design, Synthesis, and Docking Studies of Afatinib Analogs Bearing Cinnamamide Moiety as Potent EGFR Inhibitors,” Bioorganic & Medicinal Chemistry 24, no. 7 (2016): 1495–503.
  • K. Abouzid, and S. Shouman, “Design, Synthesis and in Vitro Antitumor Activity of 4-Aminoquinoline and 4-Aminoquinazoline Derivatives Targeting EGFR Tyrosine Kinase,” Bioorganic & Medicinal Chemistry 16, no. 16 (2008): 7543–51.
  • M. A. Abdelgawad, R. B. Bakr, O. A. Alkhoja, and W. R. Mohamed, “Design, Synthesis and Antitumor Activity of Novel Pyrazolo[3,4-d]Pyrimidine Derivatives as EGFR-TK Inhibitors,” Bioorganic Chemistry 66 (2016): 88–96.
  • K. Zhong, J. Zhao, Q. Li, S. Hou, Y. Tang, Y. Bian, and L. Tang, “Synthesis of Multifunctional Long-Wavelength-Emitting Fluorescent Probe Based on Hydrazine Dihydrazone and Its Copper Complex for Detection of H2S,” Chinese Journal of Organic Chemistry 38, no. 7 (2018): 1786–91.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.