272
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

β‐Cyclodextrin: An Efficient Supramolecular Catalyst for the Synthesis of Pyranoquinolines Derivatives under Ultrasonic Irradiation in Water

ORCID Icon, , & ORCID Icon
Pages 4224-4239 | Received 15 Nov 2020, Accepted 30 Jan 2021, Published online: 17 Feb 2021

Reference

  • C. K. Jadhav, A. S. Nipate, A. V. Chate, P. M.  Kamble, G. A. Kadam, V. S. Dofe, V. M. Khedkar, and C. H. Gill, “Room Temperature Ionic Liquid Promoted Improved and Rapid Synthesis of Highly Functionalized Imidazole and Evaluation of Their Inhibitory Activity against Human Cancer Cells,” Journal of the Chinese Chemical Society (2021).
  • R. C. Cioc, E. Ruijter, and R. V. A. Orru, “Multicomponent Reactions: advanced Tools for Sustainable Organic Synthesis,” Green Chemistry. 16, no. 6 (2014): 2958–75.
  • M. Mamaghani, and R. Hossein Nia, “A Review on the Recent Multicomponent Synthesis of Pyranopyrazoles,” Polycyclic Aromatic Compounds, (2019): 1–69.
  • A. Dömling, W. Wang, and K. Wang, “Chemistry and Biology of Multicomponent Reactions,” Chemical Reviews 112, no. 6 (2012): 3083–135.
  • R. Mishra, A. Jana, A. K. Panday, and L. H. Choudhury, “Synthesis of Spirooxindoles Fused with Pyrazolo-Tetrahydropyridinone and Coumarin-Dihydropyridine-Pyrazole Tetracycles by Reaction Medium Dependent Isatin-Based Multicomponent Reactions,” New Journal of Chemistry 43, no. 7 (2019): 2920–32.
  • D. S. Aher, K. R. Khillare, L. D. Chavan, and S. G. Shankarwar, “Quaternary Vanado‐Molybdotungstophosphoric Acid [H 5 PW 6 Mo 4 V 2 O 40] over Natural Montmorillonite as a Heterogeneous Catalyst for the Synthesis 4 H ‐Pyran and Polyhydroquinoline Derivatives,” ChemistrySelect 5, no. 25 (2020): 7320–31.
  • C. K. Jadhav, A. S. Nipate, A. V. Chate, V. D. Songire, A. P. Patil, and C. H. Gill, “Efficient Rapid Access to Biginelli for the Multicomponent Synthesis of 1,2,3,4-Tetrahydropyrimidines in Room-Temperature Diisopropyl Ethyl Ammonium Acetate,” ACS Omega 4, no. 27 (2019): 22313–24.
  • J. Safari, and N. H. Nasab, “Ultrasonic Activated Efficient Synthesis of Indenopyrazolones via a One-Pot Multicomponent Reaction,” Polycyclic Aromatic Compounds (2019): 1–9.
  • E. Ruijter, and R. V. A. Orru, “Multicomponent Reactions - opportunities for the pharmaceutical industry,” Drug Discovery Today. Technologies 10, no. 1 (2013): e15–e20.
  • C. K. Jadhav, A. S. Nipate, A. V. Chate, A. P. Patil, and C. H. Gill, “Ionic Liquid Catalyzed One‐Pot Multi‐Component Synthesis of Fused Pyridine Derivatives: A Strategy for Green and Sustainable Chemistry,” Journal of Heterocyclic Chemistry 57, no. 12 (2020): 4291–303. jhet.4135.
  • C. K. Jadhav, A. S. Nipate, A. V. Chate, V. S. Dofe, J. N. Sangshetti, V. M. Khedkar, and C. H. Gill, “Rapid Construction of Substituted Dihydrothiophene Ureidoformamides at Room Temperature Using Diisopropyl Ethyl Ammonium Acetate: A Green Perspective,” ACS Omega 5, no. 45 (2020): 29055–67.
  • R. Ghorbani-Vaghei, F. Rahmatpour, N. Sarmast, J. Mahmoudi, and A. Shahriari, “DABCO as a Green Catalyst for the Synthesis of Pyranoquinoline Derivatives,” Canadian Journal of Chemistry 95, no. 5 (2017): 601–4.
  • R. Pagadala, S. Maddila, S. Rana, and S. B. Jonnalagadda, “Ce–Zr/SiO2: A Versatile Reusable Heterogeneous Catalyst for Three-Component Synthesis and Solvent Free Oxidation of Benzyl Alcohol,” RSC Advances 4, no. 13 (2014): 6602.
  • A. Weyesa, and E. Mulugeta, “Recent Advances in the Synthesis of Biologically and Pharmaceutically Active Quinoline and Its Analogues: A Review,” RSC Advances 10, no. 35 (2020): 20784–93.
  • X.-F. Shang, S. L. Morris-Natschke, Y.-Q. Liu, X. Guo, X.-S. Xu, M. Goto, J.-C. Li, G.-Z. Yang, and K.-H. Lee, “Biologically Active Quinoline and Quinazoline Alkaloids Part I,” Medicinal Research Reviews 38, no. 3 (2018): 775–828.
  • R. A. Mekheimer, M. A. Al-Sheikh, H. Y. Medrasi, and K. U. Sadek, “Advancements in the Synthesis of Fused Tetracyclic Quinoline Derivatives,” RSC Advances 10, no. 34 (2020): 19867–935.
  • K. D. Upadhyay, N. M. Dodia, R. C. Khunt, R. S. Chaniara, and A. K. Shah, “Synthesis and Biological Screening of Pyrano[3,2-c]quinoline Analogues as Anti-inflammatory and Anticancer Agents ,” ACS Medicinal Chemistry Letters 9, no. 3 (2018): 283–8.
  • I.-S. Chen, I.-W. Tsai, C.-M. Teng, J.-J. Chen, Y.-L. Chang, F.-N. Ko, M. C. Lu, and J. M. Pezzuto, “Pyranoquinoline Alkaloids from Zanthoxylum Simulans,” Phytochemistry 46, no. 3 (1997): 525–9.
  • H. K. Wabo, P. Tane, J. D. Connolly, C. C. Okunji, B. M. Schuster, and M. M. Iwu, “Tabouensinium Chloride, a Novel Quaternary Pyranoquinoline Alkaloid from Araliopsis Tabouensis,” Natural Product Research 19, no. 6 (2005): 591–5.
  • J. P. Michael, “Quinoline, Quinazoline and Acridone Alkaloids,” Natural Product Reports 24, no. 1 (2007): 223–46.
  • C. Ito, M. Itoigawa, A. Furukawa, T. Hirano, T. Murata, N. Kaneda, Y. Hisada, K. Okuda, and H. Furukawa, “Quinolone Alkaloids with Nitric Oxide Production Inhibitory Activity from Orixa Japonica,” Journal of Natural Products 67, no. 11 (2004): 1800–3.
  • D. Mabire, S. Coupa, C. Adelinet, A. Poncelet, Y. Simonnet, M. Venet, R. Wouters, A. S. J. Lesage, L. Van Beijsterveldt, and F. Bischoff, “Synthesis, structure-activity relationship, and receptor pharmacology of a new series of quinoline derivatives acting as selective, noncompetitive mGlu1 antagonists,” Journal of Medicinal Chemistry 48, no. 6 (2005): 2134–53. [15771457]
  • M. Sekar, and K. J. R. Prasad, “Synthesis of Some Novel 2-Oxo‐Pyrano(2,3-b)- and 2-Oxo‐Pyrido(2,3-b)Quinoline Derivatives as Potential Antimalarial, Diuretic, Clastogenic and Antimicrobial Agents,” Journal of Chemical Technology & Biotechnology 72, no. 1 (1998): 50–4.
  • M. J. McLaughlin, and R. P. Hsung, “Total Syntheses of Pyranoquinoline Alkaloids: Simulenoline, Huajiaosimuline, and (+/-)-7-demethoxyzanthodioline,” The Journal of Organic Chemistry 66, no. 3 (2001): 1049–53.
  • H. Cairns, D. Cox, K. J. Gould, A. H. Ingall, and J. L. Suschitzky, “New Antiallergic Pyrano [3,2-g]Quinoline-2,8-Dicarboxylic Acids with Potential for the Topical Treatment of Asthma,” Journal of Medicinal Chemistry 28, no. 12 (1985): 1832–42.
  • R. Watpade, A. Bholay, and R. Toche, “Synthesis of New Pyrano-Fused Quinolines as Antibacterial and Antimicrobial Agents,” Journal of Heterocyclic Chemistry 54, no. 6 (2017): 3434–9.
  • A. M. El-Agrody, E. S. A. E. H. Khattab, A. M. Fouda, and A. M. Al-Ghamdi, “Synthesis and Antitumor Activities of Certain Novel 2-Amino-9-(4-Halostyryl)-4H-Pyrano[3,2-h]Quinoline Derivatives,” Medicinal Chemistry Research 21, no. 12 (2012): 4200–13.
  • J. Marco-Contelles, R. León, M. G. López, A. G. García, and M. Villarroya, “Synthesis and Biological Evaluation of New 4H-Pyrano[2,3-b]Quinoline Derivatives That Block Acetylcholinesterase and Cell Calcium Signals, and Cause Neuroprotection against Calcium Overload and Free Radicals,” European Journal of Medicinal Chemistry 41, no. 12 (2006): 1464–9.
  • A. A. A. Hafez, and N. M. Nahas, “Synthesis and Antifungal Testing of Some New Tricyclic Heterocyclic Quinolines,” Heterocyclic Communications 11, no. 6 (2005): 495–504.
  • J. P. Michael, “Quinoline, Quinazoline and Acridone Alkaloids,” Natural Product Reports 20, no. 5 (2003): 476–93.
  • O. Afzal, S. Kumar, M. R. Haider, M. R. Ali, R. Kumar, M. Jaggi, and S. Bawa, “A Review on Anticancer Potential of Bioactive Heterocycle Quinoline,” European Journal of Medicinal Chemistry 97, (2015): 871–910.
  • A. V. Chate, A. S. Kulkarni, C. K. Jadhav, A. S. Nipte, and G. M. Bondle, “Multicomponent Reactions and Supramolecular Catalyst: A Perfect Synergy for Eco‐Compatible Synthesis of Pyrido[2,3‐ d] Pyrimidines in Water,” Journal of Heterocyclic Chemistry 57, no. 5 (2020): 2184–93.
  • K. Tungala, P. Adhikary, V. Azmeera, K. Kumar, and S. Krishnamoorthi, “Dendritic Star Polymer of Polyacrylamide Based on a β-Cyclodextrin Trimer: A Flocculant and Drug Vehicle,” New Journal of Chemistry 41, no. 2 (2017): 611–8.
  • V. B. Yadav, P. Rai, H. Sagir, A. Kumar, and I. R. Siddiqui, “A Green Route for the Synthesis of Pyrrolo[2,3- d] Pyrimidine Derivatives Catalyzed by β-Cyclodextrin,” New Journal of Chemistry 42, no. 1 (2018): 628–33.
  • M. Murugan, R. Rajamohan, A. Anitha, and M. Fatiha, “Non-Covalent Bonding Interaction between Primaquine as Guest and 2-(Hydroxypropyl)-β-Cyclodextrin as Host,” Polycyclic Aromatic Compounds, (2020): 1–18.
  • G. S. Kumar, M. Zeller, M. A. Frasso, and K. J. R. Prasad, “InCl 3 Promoted Synthesis of Pyrano[3,2- h] Quinolines via Microwave Irradiation,” Journal of Heterocyclic Chemistry 52, no. 3 (2015): 926–30.
  • S. Bandaru, R. K. Majji, S. Bassa, P. N. Chilla, R. Yellapragada, S. Vasamsetty, R. K. Jeldi, R. B. Korupolu, and P. D. Sanasi, “Magnetic Nano Cobalt Ferrite Catalyzed Synthesis of 4<i>H</i>-Pyrano[3,2-<i>h</i>]Quinoline Derivatives under Microwave Irradiation,” Green and Sustainable Chemistry 06, no. 02 (2016): 101–9.
  • I. V. Magedov, M. Manpadi, M. A. Ogasawara, A. S. Dhawan, S. Rogelj, S. Van Slambrouck, W. F. A. Steelant, N. M. Evdokimov, P. Y. Uglinskii, E. M. Elias, et al. “Structural Simplification of Bioactive Natural Products with Multicomponent Synthesis. 2. antiproliferative and Antitubulin Activities of Pyrano[3,2-c]Pyridones and Pyrano[3,2-c]Quinolones,” Journal of Medicinal Chemistry 51, no. 8 (2008): 2561–70.
  • X. Wang, Z. Zeng, D. Shi, X. Wei, and Z. Zong, “One‐Step Synthesis of 2‐Amino‐3‐Cyano‐4‐ Aryl‐1,4,5,6‐Tetrahydropyrano[3,2‐ c] Quinolin‐5‐One Derivatives Using KF–Al 2 O 3 as Catalyst,” Synthetic Communications 34, no. 16 (2004): 3021–7.
  • M. Goudar, H. Jayadevappa, A. Sudhakara, and K. Mahadevan, “Imino Diels-Alder Reactions: Efficient Synthesis of Pyrano and Furanoquinolines Catalyzed by Antimony (III) Sulfate,” Letters in Organic Chemistry 5, no. 8 (2008): 628–32.
  • M. A. Ibrahim, H. M. Hassanin, Y. A.-A. Gabr, and Y. A.-S. Alnamer, “Novel Heterocyclic Derivatives of Pyrano[3,2-c]Quinolinone from 3-(1-ethy1-4-Hydroxy-2-Oxo-2(1H)-Quinolin-3-yl)-3-Oxopropanoic Acid,” European Journal of Chemistry 1, no. 3 (2010): 195–9.
  • A. Romdhane, and H. Ben. Jannet, “Synthesis of New Pyran and Pyranoquinoline Derivatives,” Arabian Journal of Chemistry 10, (2017): S3128–S34.
  • Y. Ma, C. Qian, M. Xie, and J. Sun, “Lanthanide Chloride Catalyzed Imino Diels − Alder Reaction. One-Pot Synthesis of Pyrano[3,2- c] - and Furo[3,2- c] Quinolines,” The Journal of Organic Chemistry 64, no. 17 (1999): 6462–7.
  • A. S. Nipate, C. K. Jadhav, A. V. Chate, K. S. Taur, and C. H. Gill, “β‐Cyclodextrin Catalyzed Access to Fused 1,8‐Dihydroimidazo[2,3‐ b] Indoles via One‐Pot Multicomponent Cascade in Aqueous Ethanol: Supramolecular Approach toward Sustainability,” Journal of Heterocyclic Chemistry 57, no. 2 (2020): 820–9.
  • S. V. Akolkar, N. D. Kharat, A. A. Nagargoje, D. D. Subhedar, and B. B. Shingate, “Ultrasound-Assisted β-Cyclodextrin Catalyzed One-Pot Cascade Synthesis of Pyrazolopyranopyrimidines in Water,” Catalysis Letters 150, no. 2 (2020): 450–60.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.