143
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of 2-Amino-6-(1H-Indol-3-yl)-4-Phenylnicotinonitriles and Bis(Indolyl) Pyridines Using a Novel Acidic Nanomagnetic Catalyst via a Cooperative Vinylogous Anomeric-Based Oxidation Mechanism

, , , , &
Pages 4270-4285 | Received 09 Jul 2020, Accepted 02 Feb 2021, Published online: 03 Mar 2021

References

  • L. Mohammadkhani, and M. M. Heravi, “Synthesis of Various n-Heterocycles Using the Ugi Four-Center Three-Component Reaction,” Chemistryselect 4 no. 34 (2019): 10187–96.
  • S. Santra, “Baker's Yeast Catalyzed Multicomponent Reactions: A New Hope?,” Chemistryselect 4 no. 43 (2019): 12630–7.
  • L. Reguera, and D. G. Rivera, “Multicomponent Reaction Toolbox for Peptide Macrocyclization and Stapling,” Chemical Reviews 119 no. 17 (2019): 9836–60.
  • S. Zhi, X. Ma, and W. Zhang, “Consecutive Multicomponent Reactions for the Synthesis of Complex Molecules,” Organic & Biomolecular Chemistry 17 no. 33 (2019): 7632–50.
  • B. H. Rotstein, S. Zaretsky, V. Rai, and A. K. Yudin, “Small Heterocycles in Multicomponent Reactions,” Chemical Reviews 114 no. 16 (2014): 8323–59.
  • R. Kakuchi, “Multicomponent Reactions in Polymer Synthesis,” Angewandte Chemie (International ed. in English) 53 no. 1 (2014): 46–8.
  • L. Levi, and T. J. J. Müller, “Multicomponent Syntheses of Functional Chromophores,” Chemical Society Reviews 45 no. 10 (2016): 2825–46.
  • T. Zarganes-Tzitzikas, A. L. Chandgude, and A. Dömling, “Multicomponent Reactions, Union of MCRs and beyond,” Chemical Record (New York, N.Y.) 15 no. 5 (2015): 981–96.
  • D. Wang, and D. Astruc, “Fast-Growing Field of Magnetically Recyclable Nanocatalysts,” Chemical Reviews 114 no. 14 (2014): 6949–85.
  • M. Mokhtary, “Recent Advances in Catalysts Immobilized on Magnetic Nanoparticles,” Journal of the Iranian Chemical Society 13 no. 10 (2016): 1827–45.
  • Sankaranarayanapillai Shylesh, Volker Schünemann, and Werner R. Thiel, “Magnetically Separable Nanocatalysts: bridges between Homogeneous and Heterogeneous Catalysis,” Angewandte Chemie (International ed. in English) 49 no. 20 (2010): 3428–59.
  • M. Amiri, Kh Eskandari, and M. Salavati-Niasari, “Magnetically Retrievable Ferrite Nanoparticles in the Catalysis Application,” Advances in Colloid and Interface Science 271, (2019): 101982
  • M. N. Chen, L. P. Mo, Z. S. Cui, and Z. H. Zhang, “Magnetic Nanocatalysts: synthesis and Application in Multicomponent Reactions,” Current Opinion in Green and Sustainable Chemistry 15, (2019): 27–37.
  • G. Kaur, P. Devi, S. Thakur, A. Kumar, R. Chandel, and B. Banerjee, “Magnetically Separable Transition Metal Ferrites: Versatile Heterogeneous Nano-Catalysts for the Synthesis of Diverse Bioactive Heterocycles,” Chemistryselect 4 no. 7 (2019): 2181–99.
  • D. Lopez-Tejedor, R. Benavente, and J. M. Palomo, “Technology, Iron Nanostructured Catalysts: design and Applications,” Catalysis Science & Technology 8 no. 7 (2018): 1754–76.
  • C. Allais, J. M. Grassot, J. Rodriguez, and T. Constantieux, “ Metal-free multicomponent syntheses of pyridines ,” Chem Rev 114 no. 21 (2014): 10829–68.
  • J. Jarusiewicz, K. S. Yoo, and K. W. Jung, “Highly Regioselective Heck Coupling Reactions of Aryl Halides and Dihydropyran in the Presence of an NHC-Pyridine Ligand,” Synlett 2009 no. 03 (2009): 482–6.
  • S. Lin, and X. Lu, “Cationic Pd(II)/bipyridine-catalyzed conjugate addition of arylboronic acids to beta,beta-disubstituted enones: construction of quaternary carbon centers ,” Organic Letters 12 no. 11 (2010): 2536–9.
  • K. Shibatomi, T. Muto, Y. Sumikawa, A. Narayama, and S. Iwasa, “Development of a New Chiral Spiro Oxazolinylpyridine Ligand (Spymox) for Asymmetric Catalysis,” Synlett 2009 no. 02 (2009): 241–4.
  • N. De Rycke, F. Couty, and O. R. P. David, “Increasing the Reactivity of Nitrogen Catalysts,” Chemistry (Weinheim an Der Bergstrasse, Germany) 17 no. 46 (2011): 12852–71.
  • R. Murugan, and E. F. V. Scriven, “Applications of Dialkylaminopyridine (Dmap) Catalysts in Organic Synthesis,” Aldrichimica Acta. 36, (2003): 21–7.
  • G. C. Fu, “Asymmetric Catalysis with “ “planar-chiral” derivatives of 4-(dimethylamino)pyridine”, ” Accounts of Chemical Research 37 no. 8 (2004): 542–7.
  • A. Chaubey, and S. N. Pandeya, “Pyridine a Versatile Nucleuse in Pharmaceutical Field,” Asian Journal of Pharmaceutical and Clinical Research. 4, (2011): 5–8.
  • (a) P. Thapa, R. Karki, H. Choi, J. H. Choi, M. Yun, B. S. Jeong, M. J. Jung, J. M. Nam, Y. Na, W. J. Cho, “Synthesis of 2-(thienyl-2-yl or-3-yl)-4-furyl-6-aryl pyridine derivatives and evaluation of their topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship,” Bioorganic & Medicinal Chemistry 18 (2010): 2245–54. (b) J. M. Chezal, J. Paeshuyse, V. Gaumet, D. Canitrot, A. Maisonial, C. Lartigue, A. Gueiffier, E. Moreau, J. C. Teulade, O. Chavignon, et al. “Synthesis and antiviral activity of an imidazo [1, 2-a] pyrrolo [2, 3-c] pyridine series against the bovine viral diarrhea virus,” European Journal of Medicinal Chemistry 45 (2010): 2044–47. doi:10.1016/j.ejmech.2010.01.023. (c) A. Özdemir, G. Turan-Zitouni, Z. A. Kaplancıklı, G. İşcan, S. Khan, F. Demirci, “Synthesis and the selective antifungal activity of 5, 6, 7, 8-tetrahydroimidazo [1, 2-a] pyridine derivatives,” European Journal of Medicinal Chemistry 45 (2010): 2080–84. (d) L. R. Dias, M. B. Santos, S. de Albuquerque, H. C. Castro, A. M. de Souza, A. C. Freitas, M. A. DiVaio, L. M. Cabral, C. R. Rodrigues, “Synthesis, in vitro evaluation, and SAR studies of a potential antichagasic 1H-pyrazolo [3, 4-b] pyridine series,” Bioorganic & Medicinal Chemistry 15 (2007): 211–219. (e) R. B. Lacerda, C. K. de Lima, L.L. da Silva, N. C. Romeiro, A. L. P. Miranda, E. J. Barreiro, C. A. Fraga, “Discovery of novel analgesic and anti-inflammatory 3-arylamine-imidazo [1, 2-a] pyridine symbiotic prototypes,” Bioorganic & Medicinal Chemistry 17 (2009): 74–84.
  • (a) P. Singh, P. Kaur, V. Luxami, S. Kaur, and S. Kumar, “Syntheses and anti-Cancer Activities of 2-[1-(Indol-3-yl-/Pyrimidin-5-yl-/Pyridine-2-yl-/Quinolin-2-yl)-but-3-Enylamino]-2-Phenyl-Ethanols,” Bioorganic & Medicinal Chemistry 15 no. 6 (2007): 2386–95. (b)Chinnasamy Rajaram Prakash, and Sundararajan Raja, “ Design, synthesis and antiepileptic properties of novel 1-(substituted benzylidene)-3-(1-(morpholino/piperidino methyl)-2,3-dioxoindolin-5-yl)urea derivatives ,” European Journal of Medicinal Chemistry 46 no. 12 (2011): 6057–65. (c) A. Monge, I. Aldana, T. Alvarez, M. Font, E. Santiago, J. Latre, M. Bermejillo, M. Lopez-Unzu, E. Fernandez-Alvarez, “New 5H-pyridazino [4, 5-b] indole derivatives. Synthesis and studies as inhibitors of blood platelet aggregation and inotropics,” Journal of medicinal chemistry, 10. 34 (1991): 3023–3029, (d) N. Singh, S. K. Bhati, A. Kumar, “Thiazolyl/oxazolyl formazanyl indoles as potent anti-inflammatory agents,” European Journal of Medicinal Chemistry. 43 (2008): 2597–2609, doi:10.1016/j.ejmech.2007.12.024. (e) D. Bialonska, J. K. Zjawiony, 'Aplysinopsins-marine indole alkaloids: chemistry, bioactivity and ecological significance,” Marine Drugs. 7 (2009): 166–183, doi:10.3390/md7020166. (f) J. N. Sangshetti, F. A. K. Khan, A. A. Kulkarni, R. H. Patil, A. M. Pachpinde, K. S. Lohar, D. B. Shinde, “Antileishmanial activity of novel indolyl–coumarin hybrids: Design, synthesis, biological evaluation, molecular docking study and in silico ADME prediction,” Bioorganic & Medicinal Chemistry Letters. 26 (2016): 829–835, doi:10.1016/j.bmcl.2015.12.085.
  • M. Shiri, M. A. Zolfigol, H. G. Kruger, and Z. Tanbakouchian, “Bis- and trisindolylmethanes (BIMs and TIMs) ),” Chemical Reviews 110 no. 4 (2010): 2250–93.
  • J. C. Xiang, M. Wang, Y. Cheng, and A. X. Wu, “Molecular Iodine-Mediated Chemoselective Synthesis of Multisubstituted Pyridines through Catabolism and Reconstruction Behavior of Natural Amino Acids,” Organic Letters 18 no. 1 (2016): 24–7.
  • F. A. Kalam Khan, Z. Zaheer, J. N. Sangshetti, R. H. Patil, and M. Farooqui, “Antileishmanial Evaluation of Clubbed bis(indolyl)-pyridine derivatives: One-pot synthesis, in vitro biological evaluations and in silico ADME prediction,” Bioorganic & Medicinal Chemistry Letters 27 no. 3 (2017): 567–73.
  • M. A. Gouda, M. A. Berghot, G. E. Abd El Ghani, and A. E. G. M. Khalil, “Chemistry of 2-Amino-3-Cyanopyridines,” Synthetic Communications. 44 no. 3 (2014): 297–330.
  • A. Maleki, H. Movahed, and P. Ravaghi, “Magnetic Cellulose/Ag as a Novel Eco-Friendly Nanobiocomposite to Catalyze Synthesis of Chromene-Linked Nicotinonitriles,” Carbohydrate Polymers 156, (2017): 259–67.
  • J. F. Zhou, Y. Z. Song, J. S. Lv, G. X. Gong, and S. Tu, “Facile One-Pot, Multicomponent Synthesis of Pyridines under Microwave Irradiation,” Synthetic Communications. 39 no. 8 (2009): 1443–50.
  • S. L. Zhu, S. J. Ji, X. M. Su, C. Sun, and Y. Liu, “Facile and Efficient Synthesis of a New Class of Bis (3′-Indolyl) Pyridine Derivatives via One-Pot Multicomponent Reactions,” Tetrahedron Letters. 49 no. 11 (2008): 1777–81.
  • U. Jacquemard, N. Dias, A. Lansiaux, C. Bailly, C. Logé, J. M. Robert, O. Lozach, L. Meijer, J. Y. Mérour, and S. Routier, “Synthesis of 3,5-bis(2-indolyl)pyridine and 3-[(2-indolyl)-5-phenyl]pyridine derivatives as CDK inhibitors and cytotoxic agents ,” Bioorganic & Medicinal Chemistry 16 no. 9 (2008): 4932–53.
  • P. Thirumurugan, S. Mahalaxmi, and P. T. Perumal, “Synthesis and anti-Inflammatory Activity of 3-Indolyl Pyridine Derivatives through One-Pot Multi Component Reaction,” Journal of Chemical Sciences 122 no. 6 (2010): 819–32.
  • M. A. Radwan, F. M. Alminderej, and H. M. Awad, “One-Pot Multicomponent Synthesis and Cytotoxic Evaluation of Novel 7-Substituted-5-(1H-Indol-3-yl) Tetrazolo [1, 5-a] Pyrimidine-6-Carbonitrile,” Molecules 25 no. 2 (2020): 255.
  • M. Muthu, R. V. Priya, A. I. Almansour, R. S. Kumar, and R. R. Kumar, “Synthesis of indole-cycloalkyl[b]pyridine hybrids via a four-component six-step tandem process ,” Beilstein Journal of Organic Chemistry 14, (2018): 2907–15.
  • L. J. Geng, G. L. Feng, J. G. Yu, H. L. Zhang, and Y. M. Zhang, “Multicomponent Reaction for Synthesis of 2-(Indol-3-yl) Pyridine Derivatives under Microwave Irradiation,” Synthetic Communications. 41 no. 23 (2011): 3448–54.
  • P. Thirumurugan, and P. T. Perumal, “A Simple One-Pot Synthesis of Functionalised 6-(Indol-3-yl)-2, 2′-Bipyridine Derivatives via Multi-Component Reaction under Neat Condition,” Tetrahedron Letters. 50 no. 28 (2009): 4145–50.
  • T. A. Abdallah, “Studies with Enamines and Azaenamines: Synthesis and Reactivity of 3‐Dimethylamino‐2‐[(3‐Indolyl) Carbonyl] Propenonitrile,” Journal of Heterocyclic Chemistry 44 no. 4 (2007): 961–5.
  • S. L. Zhu, S. J. Ji, K. Zhao, and Y. Liu, “Multicomponent Reactions for the Synthesis of New 3′-Indolyl Substituted Heterocycles under Microwave Irradiation,” Tetrahedron Letters. 49 no. 16 (2008): 2578–82.
  • Y. Hao, X. P. Xu, T. Chen, L. L. Zhao, and S. J. Ji, “Multicomponent Approaches to 8-carboxylnaphthyl-functionalized pyrazolo[3,4-b]pyridine derivatives ,” Organic & Biomolecular Chemistry 10 no. 4 (2012): 724–8.
  • (a) I. V. Alabugin, “Stereoelectronic effects: a bridge between structure and reactivity,” John Wiley & Sons 2016. (b) I. V. Alabugin. G, P. Gomes. M. Abdo, “Hyperconjugation,” WIREs Computational Molecular Science. 9 (2018): e1389, (c) I. V. Alabugin, K. M. Gilmore, P. W. Peterson, “Hyperconjugation,” WIREs Computational Molecular Science. 1 (2011): 109–141, doi:10.1002/wcms.6. (d) S. Z. Vatsadze, Y. D. Loginova, G. dos Passos Gomes, I. V. Alabugin, “Stereoelectronic chameleons: the donor–acceptor dichotomy of functional groups,” Chemistry – A European Journal 23 (2017): 3225–3245, doi:10.1002/chem.201603491.
  • J. T. Edward, “Industry, Stability of Glycosides to Acid Hydrolysis,” Chemistry and Industry. 3, (1955): 1102–4.
  • J. M. Erhardt, and J. D. Wuest, “Transfer of Hydrogen from Orthoamides. Reduction of Protons to Molecular Hydrogen,” Journal of the American Chemical Society 102 no. 20 (1980): 6363–4.
  • H. Song, Y. Kim, J. Park, K. Kim, and E. Lee, “Activation of Small Molecules at N-Heterocyclic Carbene Centers,” Synlett 27 (2016): 477–85. doi:10.1055/s-0035-1560366.
  • S. A. Glover, “Anomeric Amides-Structure, Properties and Reactivity,” Tetrahedron 54 no. 26 (1998): 7229–71.
  • S. A. Glover, and A. A. Rosser, “HERON Reactions of Anomeric Amides: Understanding the Driving Force,” Journal of Physical Organic Chemistry 28 no. 3 (2015): 215–22.
  • S. A. Glover, A. A. Rosser, A. A. Taherpour, and B. W. Greatrex, “Formation and HERON Reactivity of Cyclic N, N-Dialkoxyamides,” Australian Journal of Chemistry 67 no. 3 (2014): 507–20.
  • E. Juaristi, and G. Cuevas, “Recent Studies of the Anomeric Effect,” Tetrahedron 48 no. 24 (1992): 5019–87.
  • (a) A. R. Katritzky, P. J. Steel, S. N. Denisenko, “X-Ray crystallographic evidence for a vinylogous anomeric effect in benzotriazole-substituted heterocycles, “Carbohydrate research. 462(2018): 13–3314, (b) A. Nowacki, B. Liberek, “Comparative conformational studies of 3, 4, 6-tri-O-acetyl-1, 5-anhydro-2-deoxyhex-1-enitols at the DFT level,” Carbohydrate Research. 462 (2018): 13–27, doi:10.1016/j.carres.2018.03.013. (c) D. P. Curran, Y. GSuh, “Selective mono-Claisen rearrangement of carbohydrate glycals. A chemical consequence of the vinylogous anomeric effect,” Carbohydrate Research. 171 (1987): 161–191, 10.1016/S0008-6215(00)90885-1. (d) M. D. Drew, M. C. Wall, J. T. Kim, “Stereoselective propargylation of glycals with allenyltributyltin (IV) via a Ferrier type reaction,” Tetrahedron Lett. 53 (2012): 2833–2836, doi:10.1016/j.tetlet.2012.03.115. (e) S. E. Denmark, M. S. Dappen, N. L. Sear, R. T. Jacobs, “The vinylogous anomeric effect in 3-alkyl-2-chlorocyclohexanone oximes and oxime ethers,” Journal of the American Chemical Society 112 (1990): 3466–3474, doi:10.1021/ja00165a034. (f) A. Nowacki, D. Walczak, B. Liberek, “Fully acetylated 1, 5-anhydro-2-deoxypent-1-enitols and 1, 5-anhydro-2, 6-dideoxyhex-1-enitols in DFT level theory conformational studies,” Carbohydrate Research. 352 (2012): 177–185, doi:10.1016/j.carres.2012.02.008. (g) C. Jäkel, K. H. Dötz, “Organotransition metal modified sugars: Part 22. Direct metalation of glycals: short and efficient routes to diversely protected stannylated glycals,” Journal of Organometallic Chemistry. 624 (2001): 172–185, doi:10.1016/S0022-328X(00)00920-7. (h) M. Asgari, D. Nori-Shargh, “Exploring the impacts of the vinylogous anomeric effect on the synchronous early and late transition states of the hydrogen molecule elimination reactions of cis-3, 6-dihalocyclohexa-1, 4-dienes,” Structural Chemistry. 28 (2017): 1803–1814, doi:10.1007/s11224-017-0959-2. (i) A. Nowacki, B. Liberek, “Acetylated methyl 1, 2-dideoxyhex-1-enopyranuronates in density functional theory conformational studies,” Carbohydrate Research. 371 (2013): 1-7, doi:10.1016/j.carres.2018.03.013.
  • S. Kalhor, M. Yarie, M. Rezaeivala, and M. A. Zolfigol, “Novel Magnetic Nanoparticles with Morpholine Tags as Multirole Catalyst for Synthesis of Hexahydroquinolines and 2-Amino-4, 6-Diphenylnicotinonitriles through Vinylogous Anomeric-Based Oxidation,” Research on Chemical Intermediates 45 no. 6 (2019): 3453–80.
  • F. Karimi, M. A. Zolfigol, and M. Yarie, “A Novel and Reusable Ionically Tagged Nanomagnetic Catalyst: Application for the Preparation of 2-Amino-6-(2-Oxo-2H-Chromen-3-yl)-4-Arylnicotinonitriles via Vinylogous Anomeric Based Oxidation,” Molecular Catalysis 463, (2019): 20–9.
  • M. Torabi, M. Yarie, and M. A. Zolfigol, “Synthesis of a Novel and Reusable Biological Urea Based Acidic Nanomagnetic Catalyst: Application for the Synthesis of 2-Amino-3-Cyano Pyridines via Cooperative Vinylogous Anomeric Based Oxidation,” Applied Organometallic Chemistry 33 no. 6 (2019): e4933.
  • F. Karimi, M. Yarie, and M. A. Zolfigol, “Fe3O4@SiO2@(CH2)3-Urea-Thiourea: A Novel Hydrogen-Bonding and Reusable Catalyst for the Construction of Bipyridine-5-Carbonitriles via a Cooperative Vinylogous Anomeric Based Oxidation,” Molecular Catalysis 497, (2020): 111201.
  • F. Karimi, M. Yarie, and M. A. Zolfigol, “A Convenient Method for Synthesis of Terpyridines via a Cooperative Vinylogous Anomeric Based Oxidation,” RSC Advances 10 no. 43 (2020): 25828–35.
  • P. Ghasemi, M. Yarie, M. A. Zolfigol, A. A. Taherpour, and M. Torabi, “Ionically Tagged Magnetic Nanoparticles with Urea Linkers: Application for Preparation of 2-Aryl-Quinoline-4-Carboxylic Acids via an Anomeric-Based Oxidation Mechanism,” ACS Omega 5 no. 7 (2020): 3207–17.
  • M. Yarie, “Catalytic Anomeric Based Oxidation,” Iranian Journal of Catalysis 7, (2017): 85–8.
  • M. Yarie, “Catalytic Vinylogous Anomeric Based Oxidation (Part I)” Iran. Journal of Catalysis 10, (2020): 79–83.
  • F. Jalili, M. Zarei, M. A. Zolfigol, S. Rostamnia, and A. R. Moosavi-Zare, “SBA-15/PrN (CH2PO3H2)2 as a Novel and Efficient Mesoporous Solid Acid Catalyst with Phosphorous Acid Tags and Its Application on the Synthesis of New Pyrimido [4, 5-b] Quinolones and Pyrido [2, 3-d] Pyrimidines via Anomeric Based Oxidation,” Microporous and Mesoporous Materials 294, (2020): 109865.
  • M. Rezaeivala, M. Ahmadi, B. Captain, S. Şahin-Bölükbaşı, A. A. Dehghani-Firouzabadi, and R. William. Gable, “Synthesis, Characterization, and Cytotoxic Activity Studies of New N4O Complexes Derived from 2-({3-[2-Morpholinoethylamino]-N3-([Pyridine-2-yl] Methyl) Propylimino} Methyl) Phenol,” Applied Organometallic Chemistry 34, (2020): e5325.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.