1,243
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Vibrational Hamiltonian of Naphthalene (C10H8) Using Dynamical U(2) Lie Algebras

ORCID Icon & ORCID Icon
Pages 4684-4699 | Received 08 Nov 2020, Accepted 02 Mar 2021, Published online: 22 Mar 2021

References

  • J. L. Dunham, “The Energy Levels of a Rotating Vibrator,” Physical Review 41, no. 6 (1932): 721–31..
  • M. Molski, “Spectral Expansion of the Rovibrational Energy of Diatomic Molecules Described by Morse Potential,” Acta Physica Polonica A 84, no. 6 (1993): 1041–8.
  • M.A. Mroginski, “QM/MM Calculations of Vibrational Spectra,” in Encyclopaedia of Biophysics, edited by G. C. K. Roberts, 2013 ed. (Berlin: Springer, 2013), 56–73.
  • R. Bijker, A. Frank, and R. Lemus, J.M. Arias, and F. Pérez-Bernal, “A Comparison Between Algebraic Models of Molecular Spectroscopy,” in Symmetries in Science X, edited by B. Gruber and M. Ramek. (Boston: Springer, 1998), 37–46.
  • F. Iachello, “Algebraic Methods for Molecular Rotation-Vibration Spectra,” Chemical Physics Letters 78, no. 3 (1981): 581–5.
  • F. Iachello, and R. D. Levine, “Algebraic Approach to Molecular Rotation‐Vibration Spectra. I. Diatomic Molecules,” The Journal of Chemical Physics 77, no. 6 (1982): 3046–55.
  • O. S. van Roosmalen, A. E. L. Dieperink, and F. Iachello, “A Dynamic Algebra for Rotation-Vibration Spectra of Complex Molecules,” Chemical Physics Letters 85, no. 1 (1982): 32–6.
  • O. S. van Roosmalen, F. Iachello, R. D. Levine, and A. E. L. Dieperink, “A Dynamic Algebra for Rotation-Vibration Spectra of Complex Molecules,” The Journal of Chemical Physics 79, no. 6 (1983): 2515–36.
  • O. S. van Roosmalen, R. D. Levine, and A. E. L. Dieperink, “The Geometrical-Classical Limit of Algebraic Hamiltonians for Molecular Vibrotational Spectra,” Chemical Physics Letters 101, no. 6 (1983): 512–7.
  • O. S. van Roosmalen, I. Benjamin, and R. D. Levine, “A Unified Algebraic Model Description for Interacting Vibrational Modes in ABA Molecules,” The Journal of Chemical Physics 81, no. 12 (1984): 5986–97.
  • F. Iachello, and S. Oss, “Model of n Coupled Anharmonic Oscillators and Applications to Octahedral Molecules,” Physical Review Letters 66, no. 23 (1991): 2976–97.
  • A. Frank, and R. Lemus, “Comment on "Model of n coupled anharmonic oscillators and applications to octahedral molecules",” Physical Review Letters 68, no. 3 (1992): 413.
  • L. Wiesenfeld, “The Vibron Model for Methane: Stretch–Bend Interactions,” Journal of Molecular Spectroscopy 184, no. 2 (1997): 277–87.
  • X. W. Hou, Y. Z. Ding, and Z. Q. Ma, “Algebraic Model for Stretching and Bending Vibrations of Bent Triatomic Molecules,” International Journal of Theoretical Physics 38, no. 3 (1999): 985–91. no.
  • 15. J. Chen, F. Iachello, and J. Ping, “The Method of Symmetrized Bosons with Applications to Vibrations of Octahedral Molecules,” The Journal of Chemical Physics 104, no. 3 (1996): 815–25.
  • R. Sen, A. Kalyan, R. S. Paul, N. K. Sarkar, and R. Bhattacharjee, “A Study of Vibrational Spectra of Fullerene C70 and C80: An Algebraic Approach,” Acta Physica Polonica A 120, no. 3 (2011): 407–11.
  • R. Sen, A. Kalyan, R. Das, N. K. Sarkar, and R. Bhattacharjee, “Vibrational Frequencies of Buckminsterfullerene: An Algebraic Study,” Spectroscopy Letters 45, no. 4 (2012): 273–9.
  • K. S. Rao, V. U. M. Rao, and J. Vijayasekhar, “Spectroscopic Studies of Distorted Structure Bio-Nano Molecules,” Procedia Materials Science 10, (2015): 737–47.
  • R. Sen, A. Kalyan, N. K. Sarkar, and R. Bhattacharjee, “Application of U(2) Algebraic Model in the Study of Stretching Vibrational Spectra of Large Fullerenes C180 and C240,” Fullerenes, Nanotubes and Carbon Nanostructures 21, no. 8 (2013): 725–79.
  • Srinivasa Rao Karumuri, J. Vijaya Sekhar, V. Sreeram, V. Uma Maheswara Rao, and M. V. Basaveswara Rao, “Spectroscopic Studies on Distorted Structure Molecules by Using U(2) Lie Algebraic Method,” Journal of Molecular Spectroscopy 269, no. 1 (2011): 119–23.
  • Srinivasa Rao Karumuri, Vijayasakhar Jallaparthi, and Sreeram Venigalla, “Spectroscopic Studies of Distorted Structure Systems in the Vibron Model: Application to Porphyrin and Its Isotopomers,” International Journal of Spectroscopy 2011, (2011): 1–5.
  • S. R. Karumuri, “A Study of Vibrational Spectra of Metallotetraphenyl Porphryins: An Algebraic Approach,” Indian Journal of Physics 86, no. 12 (2012): 1147–53.
  • K. S. Rao, G. Srinivas, J. Vijayasekhar, V. U. M. Rao, Y. Srinivas, K. S. Babu, V. S. S. Kumar, and A. Hanumaiah, “Analysis of Vibrational Spectra of Nano-Bio Molecules: Application to Metalloporphyrins,” Chinese Physics B 22, no. 9 (2013): 090304.
  • S. Rao Karumuri, K. Girija Sravani, J. Vijayshekar, and L. S. S. Reddy, “Spectroscopic Studies on Distorted Structure Nano Molecules by Lie Algebraic Model,” Acta Physica Polonica A 122, no. 1 (2012): 49–52.
  • S. A. Sandford, M. P. Bernstein, and L. J. Allamandola, “The Mid-Infrared Laboratory Spectra of Naphthalene (C10H8) in Solid H2O,” The Astrophysical Journal 607, no. 1 (2004): 346–60.
  • F. Pauzat, D. Talbi, M. D. Miller, D. J. DeFrees, and Y. Ellinger, “Theoretical IR Spectra of Ionized Naphthalene,” The Journal of Physical Chemistry 96, no. 20 (1992): 7882–6.
  • S. R. Langhoff, “Theoretical Infrared Spectra for Polycyclic Aromatic Hydrocarbon Neutrals, Cations, and Anions,” The Journal of Physical Chemistry 100, no. 8 (1996): 2819–41.
  • W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (New York: John Wiley, 1986), 548.
  • J. Szczepanski, and M. Vala, “Laboratory Evidence for Ionized Polycyclic Aromatic Hydrocarbons in the Interstellar Medium,” Nature 363, no. 6431 (1993): 699–701.
  • B. H. Foing, and P. Ehrenfreund, “Detection of Two Interstellar Absorption Bands Coincident with Spectral Features of C60,” Nature 369, no. 6478 (1994): 296–8.
  • D. M. Hudgins, S. A. Sandford, and L. J. Allamandola, “Infrared Spectroscopy of Polycyclic Aromatic Hydrocarbon Cations. 1. Matrix-Isolated Naphthalene and Perdeuterated Naphthalene,” The Journal of Physical Chemistry 98, no. 16 (1994): 4243–53.
  • N. Rougeau, J. P. Flament, P. Youkharibache, H. P. Gervais, and G. Berthier, “Vibrational Modelling in Large Polycyclic Aromatic Hydrocarbons,” Journal of Molecular Structure: THEOCHEM 254, no. 12 (1992): 405–28.
  • M. Ibrahim, A. Nadamm, and D. Eldin, “Density Functional Theory and FTIR Spectroscopic Study of Carboxyl Group,” Indian Journal of Pure and Applied Physics 43, no. 12 (2005): 911–7. no. http://hdl.handle.net/123456789/8906
  • A. Srivatsava, and V. B. Singh, “Theoretical and Experimental Studies of Vibrational Spectra of Naphthalene and Its Cation,” Indian Journal of Pure and Applied Physics 45, (2017): 714–20. http://hdl.handle.net/123456789/2661
  • Cameron J. Mackie, Alessandra Candian, Xinchuan Huang, Elena Maltseva, Annemieke Petrignani, Jos Oomens, Wybren Jan Buma, Timothy J. Lee, and Alexander G. G. M. Tielens, “The Anharmonic Quartic Force Field Infrared Spectra of Three Polycyclic Aromatic Hydrocarbons: Naphthalene, Anthracene, and Tetracene,”The Journal of Chemical Physics 143, no. 22 (2015): 224314
  • S. Chakraborty, S. Banik, and P. K. Das, “Anharmonicity in the Vibrational Spectra of Naphthalene and Naphthalene-d8: Experiment and Theory,” The Journal of Physical Chemistry. A 120, no. 49 (2016): 9707–18.
  • J. M. L. Martin, J. El-Yazal, and J.-P. Francois, “Structure and Vibrational Spectrum of Some Polycyclic Aromatic Compounds Studied by Density Functional Theory. 1. Naphthalene, Phenanthrene, and Anthracene,” The Journal of Physical Chemistry 100, no. 38 (1996): 15358–67. no.
  • F. Iachello and R. D. Levine, Algebraic theory of molecules (Oxford University Press, Oxford, 1995).
  • S. Oss, “Algebraic Models in Molecular Spectroscopy,” in Advances in Chemical Physics, edited by I. Prigogine and Stuart A. Rice (Oxford, UK: John Wiley Sons, Inc., 1996), 455–649.
  • K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry, 6th ed. (New York: Wiley, 2009).
  • K. P. Huber, and G. Herzberg, Molecular Spectra and Molecular Structure. IV: Constants of Diatomic Molecules (New York: Van Nostrand Reinhold, 1979).
  • M. R. Balla, and V. S. Jaliparthi, “Vibrational Hamiltonian of Methylene Chloride Using U(2) Lie Algebra,” Molecular Physics 119, no. 5 (2021): e1828634.
  • P. J. Linstorm, and W. G. Mallard (Eds.), NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899 (retrieved October 29, 2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.