237
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Reactions and Antibacterial Activity of 6-Bromo-3-(2-Bromoacetyl)-2H-Chromen-2-One

ORCID Icon, &
Pages 4809-4818 | Received 10 Jun 2020, Accepted 25 Mar 2021, Published online: 30 Apr 2021

References

  • F. Gao, T. Wang, M. Gao, X. Zhang, Z. Liu, S. Zhao, Z. Lv, and J. Xiao, “Benzofuran-Isatin-Imine Hybrids Tethered via Different Length Alkyl Linkers: Design, Synthesis and in Vitro Evaluation of Anti-Tubercular and Anti-Bacterial Activities as Well as Cytotoxicity,” European Journal of Medicinal Chemistry 165 (2019): 323–31.
  • W. Dan and J. Dai, European Journal of Medicinal Chemistry 187 (2020): e111980.
  • A. Asadi, S. Razavi, M. Talebi, and M. Gholami, “A Review on Anti-Adhesion Therapies of Bacterial Diseases,” Infection 47, no. 1 (2019): 13–23.
  • F. Borges, F. Roleira, N. Milhazes, L. Santana, and E. Uriarte, “Simple Coumarins and Analogues in Medicinal Chemistry: Occurrence, Synthesis and Biological Activity,” Current Medicinal Chemistry 12, no. 8 (2005): 887–916.
  • H. M. Alshibl, E. S. Al-Abdullah, M. E. Haiba, H. M. Alkahtani, G. E. A. Awad, A. H. Mahmoud, B. M. M. Ibrahim, A. Bari, and A. Villinger, “Synthesis and Evaluation of New Coumarin Derivatives as Antioxidant, Antimicrobial, and Anti-Inflammatory Agents,” Molecules 25, no. 14 (2020): 3251.
  • N. C. Desai, T. J. Karkar, R. H. Vekariya, S. B. Joshi, K. A. Jadejaa, and D. V. Vaja, “Synthesis, Characterization, Molecular Docking Studies and Biological Activity of Coumarin Linked 2-Pyridone Heterocycles,” Indian Journal of Chemistry 59B (2020): 231.
  • S. A. Morsy, A. A. Farahat, M. N. A. Nasr, and A. S. Tantawy, “Synthesis, Molecular Modeling and Anticancer Activity of New Coumarin Containing Compounds,” Saudi Pharmaceutical Journal 25, no. 6 (2017): 873–83.
  • A. Sabt, O. M. Abdelhafez, R. S. El-Haggar, H. M. F. Madkour, W. M. Eldehna, E. E. A. M. El-Khrisy, M. A. Abdel-Rahman, and L. A. Rashed, “Novel Coumarin-6-Sulfonamides as Apoptotic Anti-Proliferative Agents: Synthesis, In Vitro Biological Evaluation, and QSAR Studies,” Journal of Enzyme Inhibition and Medicinal Chemistry 33, no. 1 (2018): 1095–107.
  • M. A. Junjie, H. Kun, N. Xin, C. Roufen, and X. B. W. Cuifang, “Design, Synthesis, Biological Activity and Molecular Docking Study of Coumarin Derivatives Bearing 2-Methyl b iphenyl Moiety,” Chemical Research in Chinese Universities 35, no. 3 (2019): 410.
  • B. M. Chougala, S. Samundeeswari, M. Holiyachi, L. A. Shastri, S. Dodamani, S. Jalalpure, S. R. Dixit, S. D. Joshi, and V. A. Sunagar, “Synthesis, Characterization and Molecular Docking Studies of Substituted 4-Coumarinylpyrano[2,3-c]Pyrazole Derivatives as Potent Antibacterial and Anti-Inflammatory Agents,” European Journal of Medicinal Chemistry 125 (2017): 101–16.
  • R. El-Haggar and R. I. Al-Wabli, “Anti-Inflammatory Screening and Molecular Modeling of Some Novel Coumarin Derivatives,” Molecules 20, no. 4 (2015): 5374–91.
  • B. N. Sudha and V. G. Sastry, “Synthesis and Evaluation of Novel Coumarinyl Thiazole Azodyes as Anti-bacterial and Analgesic,” International Journal of Advanced Research 4, no. 3 (2016): 1225.
  • K. Pérez-Cruz, M. Moncada-Basualto, J. Morales-Valenzuela, G. Barriga-González, P. Navarrete-Encina, L. Núñez-Vergara, J. A. Squella, and C. Olea-Azar, “Synthesis and Antioxidant Study of New Polyphenolic Hybrid-Coumarins,” Arabian Journal of Chemistry 11, no. 4 (2018): 525–37.
  • Y. K. Al-Majedy, D. Al-Duhaidahawi, K. Al-Azawi, A. A. Al-Amiery, A. A. H. Kadhum, and A. B. Mohamad, “Coumarins as Potential Antioxidant Agents Complemented with Suggested Mechanisms and Approved by Molecular Modeling Studies,” Molecules 21, no. 2 (2016): 135.
  • Y.-F. Shen, L. Liu, C.-Z. Feng, Y. Hu, C. Chen, G.-X. Wang, and B. Zhu, “Synthesis and Antiviral Activity of a New Coumarin Derivative against Spring Viraemia of Carp Virus,” Fish & Shellfish Immunology 81 (2018): 57–66.
  • R. S. Keri, B. S. Sasidhar, B. M. Nagaraja, and M. A. Santos, “Recent Progress in the Drug Development of Coumarin Derivatives as Potent Antituberculosis Agents,” European Journal of Medicinal Chemistry 100 (2015): 257–69.
  • Y.-Q. Hu, Z. Xu, S. Zhang, X. Wu, J.-W. Ding, Z.-S. Lv, and L.-S. Feng, “Recent Developments of Coumarin-Containing Derivatives and Their Anti-Tubercular Activity,” European Journal of Medicinal Chemistry 136 (2017): 122–30.
  • G. Pushpalatha, N. Pramod, G. M. Basha, M. Deepa, P. Neelaphar, and B. H. M. J. Swamy, “Design, synthesis and anti-malarial activity of coumarin fused quinoline derivatives,” Journal of Pharmacy Research 10, no. 6 (2016): 437.
  • V. Mandlik, S. Patil, R. Bopanna, S. Basu, and S. Singh, “Biological Activity of Coumarin Derivatives as Anti-Leishmanial Agents,” PLoS ONE 11, no. 10 (2016): e0164585.
  • L. Lei, Y. B. Xue, Z. Liu, S.-S. Peng, Y. He, Y. Zhang, R. Fang, J.-P. Wang, Z. W. Luo, G.-M. Yao, et al. “Coumarin Derivatives from Ainsliaea fragrans and Their Anticoagulant Activity,” Scientific Reports 5, no. 1 (2015): 13544.
  • L. Schio, F. Chatreaux, and M. Klich, “Tosylates in Palladium-Catalysed Coupling Reactions. Application to the Synthesis of Arylcoumarin Inhibitors of Gyrase B,” Tetrahedron Letters 41, no. 10 (2000): 1543–47.
  • A.-M. Periers, P. Laurin, Y. Benedetti, S. Lachaud, D. Ferroud, A. Iltis, J.-L. Haesslein, M. Klich, G. L’Hermite, and B. Musicki, “Stereoselective Synthesis of 5-Monoalkyl and 5,5-Dialkylsubstituted Noviose Derivatives,” Tetrahedron Letters. 41, no. 6 (2000): 867–71.
  • M. C. Gálvez, C. G. Barroso, and J. A. Pérez-Bustamante, “Analysis of Polyphenolic Compounds of Different Vinegar Samples,” Zeitschrift für Lebensmittel-Untersuchung und -Forschung 199, no. 1 (1994): 29–31.
  • R. Pan, X. H. Gao, Y. Li, Y. F. Xia, and Y. Dai, “Anti-Arthritic Effect of Scopoletin, a Coumarin Compound Occurring in Erycibe obtusifolia Benth Stems, Is Associated with Decreased Angiogenesis in Synovium,” Fundamental & Clinical Pharmacology 24, no. 4 (2009): 477–90.
  • D. Müller-Enoch, E. Seidl, and H. Thomas, “6.7-Dihydroxycumarin (Aesculetin) als Substrat der Catechol-O-Methyltransferase/6,7-Dihydroxycoumarin (Aesculetin) as a Substrate for Catediol-O-Methyltransferase,” Zeitschrift für Naturforschung C 31, no. 5–6 (1976): 280–84.
  • M. Lengyel, “SPORTIF-III Altanulmány Vizsgálói,” Orvosi Hetilap 145, no. 52 (2004): 2619.
  • W. Ageno, A. S. Gallus, A. Wittkowsky, M. Crowther, E. M. Hylek, and G. Palareti,“Oral anticoagulant therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines,” Chest 141, no. 2 (2012): e44S–88S.
  • J. G. Cannon, P. R. Khonje, and J. P. Long, “Centrally Acting Emetics. 9. Hofmann and Emde Degradation Products of Nuciferine,” Journal of Medicinal Chemistry 18, no. 1 (1975): 110–12.
  • S. M. Cohen and L. B. Ellwein, “Genetic errors, cell proliferation, and carcinogenesis,” Cancer Research 51 (1991): 6493.
  • J. H. Fentem and J. R. Fry, “Species Differences in the Metabolism and Hepatotoxicity of Coumarin,” Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 104, no. 1 (1993): 1–8.
  • S. Eryılmaz, E. T. Çelikoğlu, O. İdil, E. İnkaya, Z. Kozak, E. Mısır, and M. Gül, “Derivatives of Pyridine and Thiazole Hybrid: Synthesis, DFT, Biological Evaluation via Antimicrobial and DNA Cleavage Activity,” Bioorganic Chemistry 95 (2020): 103476.
  • M. R. Shaaban, T. A. Farghaly, and A. M. R. Alsaeid, “Synthesis, Antimicrobial and Anticancer Evaluations of Novel Thiazoles Incorporated Diphenyl Sulfone Moiety,” Polycyclic Aromatic Compounds (2020): 10–27.
  • A. Biernasiuk, M. Kawczyńska, A. Berecka-Rycerz, B. Rosada, A. Gumieniczek, A. Malm, K. Dzitko, and K. Z. Łączkowski, “Synthesis, Antimicrobial Activity, and Determination of the Lipophilicity of ((Cyclohex-3-Enylmethylene)Hydrazinyl)Thiazole Derivatives,” Medicinal Chemistry Research 28, no. 11 (2019): 2023–36.
  • A.-I. Pricopie, I. Ionuț, G. Marc, A.-M. Arseniu, L. Vlase, A. Grozav, L. I. Găină, D. C. Vodnar, A. Pîrnău, B. Tiperciuc, et al. “Design and Synthesis of Novel 1,3-Thiazole and 2-Hydrazinyl-1,3-Thiazole Derivatives as Anti-Candida Agents: In Vitro Antifungal Screening, Molecular Docking Study, and Spectroscopic Investigation of Their Binding Interaction with Bovine Serum Albumin,” Molecules 24, no. 19 (2019): 3435.
  • A. Abdel-Aziem, B. S. Baaiu, and A. O. Abdelhamid, “Synthesis and Evaluation of Antimicrobial Activity of Some Novel Heterocyclic Compounds from 5-Bromosalicylaldehyde,” Journal of Heterocyclic Chemistry 54, no. 6 (2017): 3471–80.
  • V. A. Adole, R. A. More, B. S. Jagdale, T. B. Pawar, and S. S. Chobe, “Efficient Synthesis, Antibacterial, Antifungal, Antioxidant and Cytotoxicity Study of 2‐(2‐Hydrazineyl)thiazole Derivatives,” ChemistrySelect 5, no. 9 (2020): 2778.
  • E. D. Dincel, E. Gürsoy, T. Yilmaz-Ozden, and N. Ulusoy-Güzeldemirci, “Antioxidant activity of novel imidazo[2,1-b]thiazole derivatives: Design, synthesis, biological evaluation, molecular docking study and in silico ADME prediction,” Bioorganic Chemistry 103 (2020): 104220.
  • A. Abdel-Aziem, “Synthesis and Antimicrobial Activity of Some Novel Thiazoles, 1,3,4-Thiadiazines, 1,3,4-Thiadiazoles Incorporating Coumarin Moiety,” Journal of Heterocyclic Chemistry 52, no. 1 (2015): 251–59.
  • P. C. Sharma, K. K. Bansal, A. Sharma, D. Sharma, and A. Deep, “Thiazole-Containing Compounds as Therapeutic Targets for Cancer Therapy,” European Journal of Medicinal Chemistry 188 (2020): 112016.
  • T. Prashanth, B. R V. Avin, P. Thirusangu, V. L. Ranganatha, B. T. Prabhakar, J. N. N. S. Chandra, and S. A. Khanum, “Synthesis of Coumarin Analogs Appended with Quinoline and Thiazole Moiety and Their Apoptogenic Role against Murine Ascitic Carcinoma,” Biomedicine & Pharmacotherapy 112 (2019): 108707.
  • Anuradha, S. Patel, R. Patle, P. Parameswaran, A. Jain, and A. Shard, “Design, computational studies, synthesis and biological evaluation of thiazole-based molecules as anticancer agents,” European Journal of Pharmaceutical Sciences 134 (2019): 20–30.
  • K. Z. Łączkowski, J. Anusiak, M. Świtalska, K. Dzitko, J. Cytarska, A. Baranowska-Łączkowska, T. Plech, A. Paneth, J. Wietrzyk, and J. Białczyk, “Synthesis, Molecular Docking, ctDNA Interaction, DFT Calculation and Evaluation of Antiproliferative and Anti-Toxoplasma Gondii Activities of 2,4-Diaminotriazine-Thiazole Derivatives,” Medicinal Chemistry Research 27, no. 4 (2018): 1131–48.
  • A. Ahmed, K. I. Molvi, H. M. Patel, R. Ullah, and A. Bari, “Synthesis of Novel 2,3,5-Tri-Substituted Thiazoles with Anti-Inflammatory and Antibacterial Effect Causing Clinical Pathogens,” Journal of Infection and Public Health 13, no. 4 (2020): 472–79.
  • M. Mishchenko, S. Shtrygol, D. Kaminskyy, and R. Lesyk, “Thiazole-Bearing 4-Thiazolidinones as New Anticonvulsant Agents,” Scientia Pharmaceutica 88, no. 1 (2020): 16.
  • T. E. Glotova, M. Y. Dvorko, A. I. Albanov, O. N. Kazheva, G. V. Shilov, and O. A. D’yachenko, “1,3-Dipolar Cycloaddition of 3-Phenylamino-5-Phenylimino-1,2,4-Dithiazole to 1-Acyl-2-Phenylacetylenes—A New Route to Functionalized 1,3-Thiazole Derivatives,” Russian Journal of Organic Chemistry 44, no. 10 (2008): 1532–37.
  • H. Osman, S. K. Yusufzai, M. S. Khan, B. M. Abd Razik, O. Sulaiman, S. Mohamad, J. A. Gansau, M. O. Ezzat, T. Parumasivam, and M. Z. Hassan, “New Thiazolyl-Coumarin Hybrids: Design, Synthesis, Characterization, X-Ray Crystal Structure, Antibacterial and Antiviral Evaluation,” Journal of Molecular Structure 1166 (2018): 147–54.
  • V. Pardo-Jiménez, P. Navarrete-Encina, and G. Díaz-Araya, “Synthesis and Biological Evaluation of Novel Thiazolyl-Coumarin Derivatives as Potent Histone Deacetylase Inhibitors with Antifibrotic Activity,” Molecules 24, no. 4 (2019): 739.
  • İ. Koca, M. Gumuş, A. Ozgur, A. Disli, and Y. Tutar, “A Novel Approach to Inhibit Heat Shock Response as Anticancer Strategy by Coumarine Compounds Containing Thiazole Skeleton,” Anti-Cancer Agents in Medicinal Chemistry 15, no. 7 (2015): 916–30.
  • A. M. Vijesh, A. M. Isloor, V. Prabhu, S. Ahmad, and S. Malladi, “Synthesis, Characterization and Anti-Microbial Studies of Some Novel 2,4-Disubstituted Thiazoles,” European Journal of Medicinal Chemistry 45, no. 11 (2010): 5460–64.
  • A. Abdel-Aziem, B. S. Baaiu, A. W. Elbazzar, and F. Elabbar, “A Facile Synthesis of Some Novel Thiazoles, Arylazothiazoles, and Pyrazole Linked to Thiazolyl Coumarin as Antibacterial Agents,” Synthetic Communications 50, no. 16 (2020): 2522–30.
  • M. Modica, M. Santagati, F. Russo, L. Parotti, L. De Gioia, C. Selvaggini, M. Salmona, and T. Mennini, “[[(Arylpiperazinyl)Alkyl]Thio]Thieno[2,3-d]Pyrimidinone Derivatives as High-Affinity, Selective 5-HT 1A Receptor Ligands,” Journal of Medicinal Chemistry 40, no. 4 (1997): 574–85.
  • M. Ema, Y. Xu, S. Gehrke, Gerd, and K. Wagner, “Identification of Non-Substrate-like Glycosyltransferase Inhibitors from Library Screening: Pitfalls & Hits,” MedChemComm 9, no. 1 (2018): 131–37.
  • A. W. Bauer, W. W. M. Kirby, J. C. Sherris, and M. Turck, “Antibiotic Susceptibility Testing by a Standardized Single Disk Method,” American Journal of Clinical Pathology 45 (1966): 493–96.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.