404
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, Molecular Modeling, and Anticancer Screening of Some New Imidazothiadiazole Analogs

Pages 5833-5854 | Received 05 May 2021, Accepted 12 Jul 2021, Published online: 29 Jul 2021

References

  • A. K. Jain, S. Sharma, A. Vaidya, V. Ravichandran, and R. K. Agrawal, “1,3,4-Thiadiazole and its Derivatives: A Review on Recent Progress in Biological Activities,” Chemical Biology & Drug Design 81, no. 5 (2013): 557–76.
  • P. K. Sharma, A. Amin, and M. Kumar, “A Review: Medicinally Important Nitrogen Sulphur Containing Heterocycles,” The Open Medicinal Chemistry Journal 14, no. 1 (2020): 49–64.
  • A. Irfan, F. Batool, S. Ahmad, R. Ullah, A. Sultan, R. Sattar, B. Nisar, and L. Rubab, “Recent Trends in the Synthesis of 1,2,3-Thiadiazoles,” Phosphorus, Sulfur, and Silicon and the Related Elements 194, no. 12 (2019): 1098–115.
  • I. A. M. Khazi, A. K. Gadad, R. S. Lamani, and B. A. Bhongade, “Chemistry of Imidazo[2,1-b][1,3,4]Thiadiazoles,” Tetrahedron 67, no. 19 (2011): 3289–316.
  • S. Maddila, S. Gorle, C. Sampath, and P. Lavanya, “Synthesis and Anti-Inflammatory Activity of Some New 1,3,4-Thiadiazoles Containing Pyrazole and Pyrrole Nucleus,” Journal of Saudi Chemical Society 20, (2016): S306–S312.
  • H. Tahtaci, H. Karacık, A. Ece, M. Er, and M. G. Şeker, “Design, “Synthesis, SAR and Molecular Modeling Studies of Novel Imidazo[2,1-b][1,3,4]Thiadiazole Derivatives as Highly Potent Antimicrobial Agents,” Molecular Informatics 37, no. 3 (2018): 1700083.
  • L. J. Zhang, M. Y. Yang, Z. H. Sun, C. X. Tan, J. Q. Weng, H. K. Wu, and X. H. Liu, “Synthesis and Antifungal Activity of 1,3,4-Thiadiazole Derivatives Containing Pyridine Group,” Letters in Drug Design & Discovery 11, no. 9 (2014): 1107–11.
  • M. Er, B. Ergüven, H. Tahtaci, A. Onaran, T. Karakurt, and A. Ece, “Synthesis, Characterization, Preliminary SAR and Molecular Docking Study of Some Novel Substituted Imidazo[2,1-b][1,3,4]Thiadiazole Derivatives as Antifungal Agents,” Medicinal Chemistry Research 26, no. 3 (2017): 615–30.
  • D. Mehta, P. Taya, and K. Neetu, “A Review on the Various Biological Activities of Thiadiazole,” International Journal of Pharmceutical and Pharmacological Science 7, no. 4 (2015): 39–47.
  • Z. N. Cui, Y. S. Li, D. K. Hu, H. Tian, J. Z. Jiang, Y. Wang, and X. J. Yan, “Synthesis and Fungicidal Activity of Novel 2,5-Disubstituted-1,3,4-Thiadiazole Derivatives Containing 5-Phenyl-2-Furan,” Scientific Reports 6, no. 1 (2016): 1–15.
  • N. Ö. Can, Ö. D. Can, D. Osmaniye, and Ü. Demir Özkay, “Synthesis of Some Novel Thiadiazole Derivative Compounds and Screening Their Antidepressant-like Activities,” Molecules 23, no. 4 (2018): 716.
  • H. Muğlu, H. Yakan, and H. A. Shouaib, “New 1,3,4-Thiadiazoles Based on Thiophene-2-Carboxylic Acid: Synthesis, Characterization, and Antimicrobial Activities,” Journal of Molecular Structure 1203, (2020): 127470.
  • M. Gür, S. Yerlikaya, N. Şener, S. Özkınalı, M. C. Baloglu, H. Gökçe, Y. C. Altunoglu, S. Demir, and İ. Şener, “Antiproliferative-Antimicrobial Properties and Structural Analysis of Newly Synthesized Schiff Bases Derived from Some 1,3,4-Thiadiazole Compounds,” Journal of Molecular Structure 1219, (2020): 128570.
  • B. Giray, A. E. Karadağ, Ö. Ş. İpek, H. Pekel, M. Güzel, and H. B. Küçük, “Design and Synthesis of Novel Cylopentapyrazoles Bearing 1,2,3-Thiadiazole Moiety as Potent Antifungal Agents,” Bioorganic Chemistry 95, (2020): 103509.
  • O. Kouatly, P. Eleftheriou, A. Petrou, D. Hadjipavlou-Litina, and A. Geronikaki, “Docking Assisted Design of Novel 4-Adamantanyl-2-Thiazolylimino-5-Arylidene-4-Thiazolidinones as Potent NSAIDs,” SAR and QSAR in Environmental Research 29, no. 2 (2018): 83–101.
  • Y. M. Omar, S. G. Abdel-Moty, and H. H. Abdu-Allah, “Further Insight into the Dual COX-2 and 15-LOX anti-Inflammatory Activity of 1,3,4-Thiadiazole-Thiazolidinone Hybrids: The Contribution of the Substituents at 5th Positions is Size Dependent,” Bioorganic Chemistry 97, (2020): 103657.
  • X. Gan, D. Hu, Z. Chen, Y. Wang, and B. Song, “Synthesis and Antiviral Evaluation of Novel 1,3,4-Oxadiazole/Thiadiazole-Chalcone Conjugates,” Bioorganic & Medicinal Chemistry Letters 27, no. 18 (2017): 4298–301.
  • M. L. Fascio, C. S. Sepúlveda, E. B. Damonte, and N. B. D'Accorso, “Synthesis and Antiviral Activity of Some Imidazo[1,2-b][1,3,4]Thiadiazole Carbohydrate Derivatives,” Carbohydrate Research 480, (2019): 61–6.
  • S. K. Manjal, R. Kaur, R. Bhatia, K. Kumar, V. Singh, R. Shankar, R. Kaur, and R. K. Rawal, “Synthetic and Medicinal Perspective of Thiazolidinones: A Review,” Bioorganic Chemistry 75, (2017): 406–23.
  • M. Djukic, M. Fesatidou, I. Xenikakis, A. Geronikaki, V. T. Angelova, V. Savic, M. Pasic, B. Krilovic, D. Djukic, B. Gobeljic, et al. “In Vitro Antioxidant Activity of Thiazolidinone Derivatives of 1,3-Thiazole and 1,3,4-Thiadiazole,” Chemico-Biological Interactions 286, (2018): 119–31.
  • K. Chidella, N. Seelam, P. K. R. Cherukumalli, J. Reddy, and G. Sridhar, “Design and Synthesis of Novel 1,2,4-Thiadiazole Linked Imidazo[1, 2-b]Pyridazine as Anticancer Agents,” Chemical Data Collections 30, (2020): 100554.
  • A. Skrzypek, J. Matysiak, M. Karpińska, K. Czarnecka, P. Kręcisz, D. Stary, J. Kukułowicz, B. Paw, M. Bajda, P. Szymański, et al. “Biological Evaluation and Molecular Docking of Novel 1,3,4-thiadiazole-resorcinol conjugates as multifunctional cholinesterases inhibitors,” Bioorganic Chemistry 107, (2021): 104617.
  • M. Alomari, M. Taha, F. Rahim, M. Selvaraj, N. Iqbal, S. Chigurupati, S. Hussain, N. Uddin, N. B. Almandil, M. Nawaz, et al. “Synthesis of Indole-Based-Thiadiazole Derivatives as a Potent Inhibitor of Α-Glucosidase Enzyme along with in Silico Study,” Bioorganic Chemistry 108, (2021): 104638.
  • A. A. A. Ali, Y. R. Lee, A. T. Wu, V. K. Yadav, D. S. Yu, and H. S. Huang, “Structure-Based Strategies for Synthesis, Lead Optimization and Biological Evaluation of N-Substituted Anthra[1,2-c][1,2,5]Thiadiazole-6,11-Dione Derivatives as Potential Multi-Target Anticancer Agents,” Arabian Journal of Chemistry 14, no. 2 (2021): 102884.
  • C. Wang, Z. Wang, M. Gao, Y. Li, Y. Zhang, K. Bao, Y. Wu, Q. Guan, D. Zuo, and W. Zhang, “Design, Synthesis and Anticancer Activity of 5-Aryl-4-(4-Arylpiperazine-1-Carbonyl)-1,2,3-Thiadiazoles as Microtubule-Destabilizing Agents,” Bioorganic Chemistry 106, (2021): 104199.
  • J. Ramprasad, N. Nayak, U. Dalimba, P. Yogeeswari, D. Sriram, S. K. Peethambar, R. Achur, and H. S. Kumar, “Synthesis and Biological Evaluation of New Imidazo[2,1-b][1,3,4]Thiadiazole-Benzimidazole Derivatives,” European Journal of Medicinal Chemistry 95, (2015): 49–63.
  • J. Ramprasad, N. Nayak, U. Dalimba, P. Yogeeswari, and D. Sriram, “One-Pot Synthesis of New Triazole-Imidazo[2,1-b][1,3,4]Thiadiazole Hybrids via Click Chemistry and Evaluation of Their Antitubercular Activity,” Bioorganic & Medicinal Chemistry Letters 25, no. 19 (2015): 4169–73.
  • A. K. Gadad, C. S. Mahajanshetti, S. Nimbalkar, and A. Raichurkar, “Synthesis and Antibacterial Activity of Some 5-Guanylhydrazone/Thiocyanato-6-Arylimidazo [2,1-b]-1,3,4-Thiadiazole-2-Sulfonamide Derivatives,” European Journal of Medicinal Chemistry 35, no. 9 (2000): 853–7.
  • R. Kumar, S. Bua, S. Ram, S. Del Prete, C. Capasso, C. T. Supuran, and P. K. Sharma, “Benzenesulfonamide Bearing Imidazothiadiazole and Thiazolotriazole Scaffolds as Potent Tumor Associated Human Carbonic Anhydrase IX and XII Inhibitors,” Bioorganic & Medicinal Chemistry 25, no. 3 (2017): 1286–93.
  • G. Kolavi, V. Hegde, I. Ahmed. Khazi, and P. Gadad, “Synthesis and Evaluation of Antitubercular Activity of Imidazo[2,1-b][1,3,4]Thiadiazole Derivatives,” Bioorganic & Medicinal Chemistry 14, no. 9 (2006): 3069–80.
  • A. Kamal, V. S. Reddy, K. Santosh, G. B. Kumar, A. B. Shaik, R. Mahesh, S. S. Chourasiya, I. B. Sayeed, and S. Kotamraju, “Synthesis of Imidazo [2, 1-b][1, 3, 4] Thiadiazole–Chalcones as Apoptosis Inducing Anticancer Agents,” MedChemComm 5, no. 11 (2014): 1718–23.
  • D. Ibrahim, “Synthesis and Biological Evaluation of 3,6-Disubstituted [1,2,4]Triazolo[3,4-b][1,3,4]Thiadiazole Derivatives as a Novel Class of Potential Anti-Tumor Agents,” European Journal of Medicinal Chemistry 44, no. 7 (2009): 2776–81.
  • S. S. Karki, K. Panjamurthy, S. Kumar, M. Nambiar, S. A. Ramareddy, K. K. Chiruvella, and S. C. Raghavan, “Synthesis and Biological Evaluation of Novel 2-Aralkyl-5-Substituted-6-(4'-fluorophenyl)-Imidazo[2,1-b][1,3,4]Thiadiazole Derivatives as Potent Anticancer Agents,” European Journal of Medicinal Chemistry 46, no. 6 (2011): 2109–16.
  • M. N. Noolvi, H. M. Patel, N. Singh, A. K. Gadad, S. S. Cameotra, and A. Badiger, “Synthesis and Anticancer Evaluation of Novel 2-Cyclopropylimidazo[2,1-b][1,3,4]-Thiadiazole Derivatives,” European Journal of Medicinal Chemistry 46, no. 9 (2011): 4411–18.
  • A. Andreani, M. Granaiola, A. Locatelli, R. Morigi, M. Rambaldi, L. Varoli, N. Calonghi, C. Cappadone, G. Farruggia, C. Stefanelli, et al. “Substituted 3-(5-Imidazo[2,1-b]Thiazolylmethylene)-2-Indolinones and Analogues: Synthesis, Cytotoxic Activity, and Study of the Mechanism of Action,” Journal of Medicinal Chemistry 55, no. 5 (2012): 2078–88.
  • J. Oleson, A. Sloboda, W. Troy, S. Halliday, M. Landes, R. Angier, J. Semb, K. Cyr, and J. Williams, “The Carcinostatic Activity of Some 2-Amino-1,3,4-Thiadiazoles,” Journal of the American Chemical Society 77, no. 24 (1955): 6713–4.
  • B. A. Bhongade, S. Talath, R. A. Gadad, and A. K. Gadad, “Biological Activities of Imidazo [2,1-b][1,3,4]Thiadiazole Derivatives: A Review,” Journal of Saudi Chemical Society 20, (2016): S463–S475.
  • M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, and G. Petersson, Gaussian 09, Revision A.1 (Wallingford, CT, USA: Gaussian, 2009).
  • A. D. Becke, “Density-Functional Thermochemistry. III. The Role of Exact Exchange,” The Journal of Chemical Physics 98, no. 7 (1993): 5648–52.
  • C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Review B, Condensed Matter 37, no. 2 (1988): 785–9.
  • J. P. Perdew, and Y. Wang, “Pair-Distribution Function and Its Coupling-Constant Average for the Spin-Polarized Electron Gas,” Physical Review. B, Condensed Matter 46, no. 20 (1992): 12947–54.
  • R. Ditchfield, “Self-Consistent Perturbation Theory of Diamagnetism: I. A Gauge-Invariant LCAO Method for NMR Chemical Shifts,” Molecular Physics 27, no. 4 (1974): 789–807.
  • R. Dennington, T. Keith, and J. Millam, GaussView, Version 5 (Shawnee Mission, KS: Semichem Inc., 2009).
  • D. S. Biovia, Materials Studio (San Diego: Dassault Systèmes, 2017).
  • B. Delley, “Ground-State Enthalpies: Evaluation of Electronic Structure Approaches with Emphasis on the Density Functional Method,” The Journal of Physical Chemistry A 110, no. 50 (2006): 13632–9.
  • A. M. Alqahtani, and A. A. Bayazeed, “Synthesis and Antiproliferative Activity Studies of New Functionalized Pyridine Linked Thiazole Derivatives,” Arabian Journal of Chemistry 14, no. 1 (2021): 102914.
  • M. El-Naggar, H. A. Sallam, S. S. Shaban, S. S. Abdel-Wahab, A. E. G. E Amr, M. E. Azab, E. S. Nossier, and M. A. Al-Omar, “Design, Synthesis, and Molecular Docking Study of Novel Heterocycles Incorporating 1,3,4-Thiadiazole Moiety as Potential Antimicrobial and Anticancer Agents,” Molecules 24, no. 6 (2019): 1066.
  • A. E. G. E. Amr, M. H. Abo-Ghalia, G. O. Moustafa, M. A. Al-Omar, E. S. Nossier, and E. A. Elsayed, “Design, Synthesis and Docking Studies of Novel Macrocyclic Pentapeptides as Anticancer Multi-Targeted Kinase Inhibitors,” Molecules 23, no. 10 (2018): 2416.
  • H. S. Elzahabi, E. S. Nossier, N. M. Khalifa, R. A. Alasfoury, and M. A. El-Manawaty, “Anticancer Evaluation and Molecular Modeling of Multi-Targeted Kinase Inhibitors Based Pyrido[2,3-d]Pyrimidine Scaffold,” Journal of Enzyme Inhibition and Medicinal Chemistry 33, no. 1 (2018): 546–57.
  • X. Fu, S. Li, F. Jing, X. Wang, B. Li, J. Zhao, Y. Liu, and B. Chen, “Synthesis and Biological Evaluation of Novel 1,3,4-Thiadiazole Derivatives Incorporating Benzisoselenazolone Scaffold as Potential Antitumor Agents,” Medicinal Chemistry (Shariqah, United Arab Emirates) 12, no. 7 (2016): 631–9.
  • M. N. Montazer, M. Asadi, S. Bahadorikhalili, F. S. Hosseini, A. Amanlou, M. Biglar, and M. Amanlou, “Design, Synthesis, Docking Study and Urease Inhibitory Activity Evaluation of Novel 2-((5-Amino-1,3,4-Thiadiazol-2-yl)Thio)-N-Arylacetamide Derivatives,” Medicinal Chemistry Research 30, no. 3 (2021): 729–42.
  • M. Er, F. Ahmadov, T. Karakurt, Ş. Direkel, and H. Tahtaci, “A Novel Class Substituted Imidazo[2,1-b][1,3,4]Thiadiazole Derivatives: Synthesis, Characterization, in Vitro Biological Activity, and Potential Inhibitors Design Studies,” ChemistrySelect 4, no. 48 (2019): 14281–90.
  • M. Er, A. Özer, Ş. Direkel, T. Karakurt, and H. Tahtaci, “Novel Substituted Benzothiazole and Imidazo[2,1-b][1,3,4]Thiadiazole Derivatives: Synthesis, Characterization, Molecular Docking Study, and Investigation of Their in Vitro Antileishmanial and Antibacterial Activities,” Journal of Molecular Structure 1194, (2019): 284–96.
  • H. Tunel, M. Er, H. Alici, A. Onaran, T. Karakurt, and H. Tahtaci, “Synthesis, Structural Characterization, Biological Activity, and Theoretical Studies of Some Novel Thioether-Bridged 2,6-Disubstituted Imidazothiadiazole Analogues,” Journal of Heterocyclic Chemistry 58, no. 6 (2021): 1321–43.
  • P. Pouzet, I. Erdelmeier, D. Ginderow, P. M. Dansette, D. Mansuy, and J. P. Mornon, “Thiophene 1-Oxides. V. Comparison of the Crystal Structures and Thiophene Ring Aromaticity of 2,5-Diphenylthiophene, Its Sulfoxide and Sulfone,” Journal of Heterocyclic Chemistry 34, no. 5 (1997): 1567–74.
  • G. Portalone, “Benzamidinium 2-meth-oxy-benzoate,” Acta Crystallographica Section E, Structure Reports Online 69, no. Part 7 (2013): o1114–o1115.
  • D. Sajan, L. Joseph, N. Vijayan, and M. Karabacak, “Natural Bond Orbital Analysis, Electronic Structure, Non-Linear Properties and Vibrational Spectral Analysis of l-Histidinium Bromide Monohydrate: A Density Functional Theory,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 81, no. 1 (2011): 85–98.
  • F. A. Bulat, E. Chamorro, P. Fuentealba, and A. Toro-Labbe, “Condensation of Frontier Molecular Orbital Fukui Functions,” The Journal of Physical Chemistry A 108, no. 2 (2004): 342–9.
  • S. Xavier, S. Periandy, and S. Ramalingam, “NBO, Conformational, NLO, HOMO–LUMO, NMR and Electronic Spectral Study on 1-Phenyl-1-Propanol by Quantum Computational Methods,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 137, (2015): 306–20.
  • M. M. Makhlouf, A. S. Radwan, and B. Ghazal, “Experimental and DFT Insights into Molecular Structure and Optical Properties of New Chalcones as Promising Photosensitizers towards Solar Cell Applications,” Applied Surface Science 452, (2018): 337–51.
  • A. Bouchoucha, S. Zaater, S. Bouacida, H. Merazig, and S. Djabbar, “Synthesis and Characterization of New Complexes of Nickel (II), Palladium (II) and Platinum(II) with Derived Sulfonamide Ligand: Structure, DFT Study, Antibacterial and Cytotoxicity Activities,” Journal of Molecular Structure 1161, (2018): 345–55.
  • J. B. Bhagyasree, H. T. Varghese, C. Y. Panicker, J. Samuel, C. Van Alsenoy, K. Bolelli, I. Yildiz, and E. Aki, “Vibrational Spectroscopic (FT-IR, FT-Raman, ¹H NMR and UV) Investigations and Computational Study of 5-Nitro-2-(4-Nitrobenzyl) Benzoxazole,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 102, (2013): 99–113.
  • V. V. Menon, E. Fazal, Y. S. Mary, C. Y. Panicker, S. Armaković, S. J. Armaković, S. Nagarajan, and C. Van Alsenoy, “FT-IR, FT-Raman and NMR Characterization of 2-Isopropyl-5-Methylcyclohexyl Quinoline-2-Carboxylate and Investigation of Its Reactive and Optoelectronic Properties by Molecular Dynamics Simulations and DFT Calculations,” Journal of Molecular Structure 1127, (2017): 124–37.
  • N. Okulik, and A. H. Jubert, “Theoretical Analysis of the Reactive Sites of Non-Steroidal anti-Inflammatory Drugs,” Internet Electronic Journal of Molecular Design 4, no. 1 (2005): 17–30.
  • L. O. Olasunkanmi, I. B. Obot, and E. E. Ebenso, “Adsorption and Corrosion Inhibition Properties of N-{n-[1-R-5-(Quinoxalin-6-yl)-4,5-Dihydropyrazol-3-yl]Phenyl} Methanesulfonamides on Mild Steel in 1 M HCl: Experimental and Theoretical Studies,” RSC Advances 6, no. 90 (2016): 86782–97.
  • Z. El. Adnani, M. Mcharfi, M. Sfaira, M. Benzakour, A. Benjelloun, and M. E. Touhami, “DFT Theoretical Study of 7-R-3Methylquinoxalin-2(1H)-Thiones (R = H; CH3; Cl) as Corrosion Inhibitors in Hydrochloric Acid,” Corrosion Science 68, (2013): 223–30.
  • H. Mi, G. Xiao, and X. Chen, “Theoretical Evaluation of Corrosion Inhibition Performance of Three Antipyrine Compounds,” Computational and Theoretical Chemistry 1072, (2015): 7–14.
  • M. Messali, M. Larouj, H. Lgaz, N. Rezki, F. Al-Blewi, M. Aouad, A. Chaouiki, R. Salghi, and I. M. Chung, “A New Schiff Base Derivative as an Effective Corrosion Inhibitor for Mild Steel in Acidic Media: Experimental and Computer Simulations Studies,” Journal of Molecular Structure 1168, (2018): 39–48.
  • R. Roy, S. Krishnamurti, P. Geerlings, and S. Pal, “Local Softness and Hardness Based Reactivity Descriptors for Predicting Intra-and Intermolecular Reactivity Sequences: Carbonyl Compounds,” The Journal of Physical Chemistry A 102, no. 21 (1998): 3746–55.
  • R. Roy, F. de Proft, and P. Geerlings, “Site of Protonation in Aniline and Substituted Anilines in the Gas Phase: A Study via the Local Hard and Soft Acids and Bases Concept,” The Journal of Physical Chemistry A 102, no. 35 (1998): 7035–40.
  • R. K. Roy, S. Pal, and K. Hirao, “On Non-Negativity of Fukui Function Indices,” The Journal of Chemical Physics 110, no. 17 (1999): 8236–45.
  • M. Karabacak, M. Cinar, and M. Kurt, “DFT Based Computational Study on the Molecular Conformation, NMR Chemical Shifts and Vibrational Transitions for N-(2-Methylphenyl) Methanesulfonamide and N-(3-Methylphenyl)Methanesulfonamide,” Journal of Molecular Structure 968, no. 1–3 (2010): 108–14.
  • M. I. Orief, and M. H. Abdel-Rhman, “Molecular Modeling, Spectroscopic and Structural Studies on Newly Synthesized Ligand N-Benzoyl-2-Isonicotinoylhydrazine-1-Carboxamide,” Journal of Molecular Structure 1173, (2018): 332–40.
  • E. Abd El-Meguid, H. Awad, and M. Anwar, “Synthesis of New 1,3,4-Oxadiazole-Benzimidazole Derivatives as Potential Antioxidants and Breast Cancer Inhibitors with Apoptosis Inducing Activity,” Russian Journal of General Chemistry 89, no. 2 (2019): 348–56.
  • T. M. Kadayat, C. Song, Y. Kwon, and E. S. Lee, “Modified 2,4-Diaryl-5H-Indeno[1,2-b]Pyridines with Hydroxyl and Chlorine Moiety: Synthesis, Anticancer Activity, and Structure–Activity Relationship Study,” Bioorganic Chemistry 62, (2015): 30–40.
  • N. Bayrak, H. Yıldırım, M. Yıldız, M. O. Radwan, M. Otsuka, M. Fujita, H. I. Ciftci, and A. F. Tuyun, “A Novel Series of Chlorinated Plastoquinone Analogs: Design, Synthesis, and Evaluation of Anticancer Activity,” Chemical Biology & Drug Design 95, no. 3 (2020): 343–54. no.
  • A. R. Aliabadi, H. Harasami Neek, and Y. Bahmani, “4-Halo-N-(5-(Trifluoromethyl)-1,3,4-Thiadiazol-2-yl)Benzamide Benzothioamide Derivatives: Synthesis and in Vitro Anticancer Assessment,” Iranian Journal of Chemistry and Chemical Engineering 39, no. 5 (2020): 35–44.
  • M. Bhat, B. Poojary, B. S. Kalal, P. M. Gurubasavaraja Swamy, S. Kabilan, V. Kumar, N. Shruthi, S. A. Alias, and V. R. Pai, “Synthesis and Evaluation of thiazolidinone-pyrazole conjugates as anticancer and antimicrobial agents,” Future Medicinal Chemistry 10, no. 9 (2018): 1017–36.
  • W. Zhao, Y. Yang, Y.-X. Zhang, C. Zhou, H.-M. Li, Y. L. Tang, X.-H. Liang, T. Chen, and Y. J. Tang, “Fluoride-Containing Podophyllum Derivatives Exhibit Antitumor Activities through Enhancing Mitochondrial Apoptosis Pathway by Increasing the Expression of Caspase-9 in HeLa Cells,” Scientific Reports 5, no. 1 (2015): 17175.
  • B. Pucelik, R. Paczyński, G. Dubin, M. M. Pereira, L. G. Arnaut, and J. M. Dąbrowski, “Properties of Halogenated and Sulfonated Porphyrins Relevant for the Selection of Photosensitizers in Anticancer and Antimicrobial Therapies,” PLoS One 12, no. 10 (2017): e0185984.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.