442
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Review on Synthesis and Medicinal Application of Dihydropyrano[3,2-b]Pyrans and Spiro-Pyrano[3,2-b]Pyrans by Employing the Reactivity of 5-Hydroxy-2-(Hydroxymethyl)-4H-Pyran-4-One

ORCID Icon, ORCID Icon & ORCID Icon
Pages 5893-5937 | Received 23 Jan 2021, Accepted 25 Jul 2021, Published online: 13 Aug 2021

References

  • A. Beélik, “Kojic Acid,” In Advances in Carbohydrate Chemistry, vol. 11, 145–183. Amsterdam, Netherlands: Elsevier, 1956.
  • H. E. Morton, W. Kocholaty, R. Junowicz-Kocholaty, and A. Kelner, “Toxicity and Antibiotic Activity of Kojic Acid Produced by Aspergillus luteovirescens,” Journal of Bacteriology 50, no. 5 (1945): 579–84.
  • T. Yabuta, “A New Organic Acid (Kojic Acid) Formed by Aspergillus oryzae,” Journal of the Chemical Society of Japan 37, (1916): 1185–233.
  • M. D. Aytemir, G. Karakaya, and D. Ekinci, Kojic Acid Derivatives. London: InTechOpen, 2012.
  • J. Brtko, L. Rondahl, M. Fickova, D. Hudecova, V. Eybl, and M. Uher, “Kojic Acid and Its Derivatives: history and Present State of Art,” Central European Journal of Public Health 12, no. SUPP (2004): S16–S17.
  • G.Karakaya, A. Türe, A. Ercan, S. Öncül, and M. D. Aytemir, “Synthesis, Computational Molecular Docking Analysis and Effectiveness on Tyrosinase Inhibition of Kojic acid Derivatives,” Bioorganic Chemistry 88 (2019): 102950.
  • M. D. Aytemir, B. Özçelik, and G. Karakaya, “Evaluation of Bioactivities of Chlorokojic Acid Derivatives against Dermatophytes Couplet with Cytotoxicity,” Bioorganic & Medicinal Chemistry Letters 23, no. 12 (2013): 3646–9.
  • M. Veverka, “Synthesis of Some Biologically Active Derivatives of 2-Hydroxymethyl-5-Hydroxy-4H-Pyran-4-One. 2. Synthesis and Biological Properties of S-Substituted 2-Thiomethyl-5-O-Acyl Derivatives,” Chemical Papers 46, no. 3 (1992): 206–10.
  • S. Emami, E. Ghafouri, M. A. Faramarzi, N. Samadi, H. Irannejad, and A. Foroumadi, “Mannich Bases of 7-Piperazinylquinolones and Kojic Acid Derivatives: Synthesis, in Vitro Antibacterial Activity and in Silico Study,” European Journal of Medicinal Chemistry 68, (2013) : 185–91.
  • G. Karakaya, A. Ercan, S. Oncul, and M. D. Aytemir, “Synthesis and Cytotoxic Evaluation of Kojic Acid Derivatives with Inhibitory Activity on Melanogenesis in Human Melanoma Cells,” Anti-Cancer Agents in Medicinal Chemistry 18, no. 15 (2018): 2137–48.
  • S. Oncul, G. Karakaya, M. D. Aytemir, and A. Ercan, “A Kojic Acid Derivative Promotes Intrinsic Apoptotic Pathway of Hepatocellular Carcinoma Cells without Incurring Drug Resistance,” Chemical Biology & Drug Design 94, no. 6 (2019): 2084–93.
  • M. D. Aytemir, and B. Özçelik, “A Study of Cytotoxicity of Novel Chlorokojic Acid Derivatives with Their Antimicrobial and Antiviral Activities,” European Journal of Medicinal Chemistry 45, no. 9 (2010): 4089–95.
  • M. D. Aytemir, and B. Özçelik, “Synthesis and Biological Activities of New Mannich Bases of Chlorokojic Acid Derivatives,” Medicinal Chemistry Research 20, no. 4 (2011): 443–52.
  • G. A. Burdock, M. G. Soni, and I. G. Carabin, “Evaluation of Health Aspects of Kojic Acid in Food,” Regulatory Toxicology and Pharmacology: RTP 33, no. 1 (2001): 80–101.
  • S. M. Son, K. D. Moon, and C. Y. Lee, “Inhibitory Effects of Various Antibrowning Agents on Apple Slices,” Food Chemistry 73, no. 1 (2001): 23–30.
  • M. Uher, J. Brtko, O. Rajniakova, M. Kovac, and E. Novotana, “Kojic Acid and Its Derivatives in Cosmetics and Health Protection,” Parfuem Kosmet 74, (1993) : 554–6.
  • A. K. Gupta, M. D. Gover, K. Nouri, and S. Taylor, “The Treatment of Melasma: A Review of Clinical Trials,” Journal of the American Academy of Dermatology 55, no. 6 (2006): 1048–65.
  • M. Saeedi, M. Eslamifar, and K. Khezri, “Kojic Acid Applications in Cosmetic and Pharmaceutical Preparations,” Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 110, (2019) : 582–93.
  • R. Bentley, “From Miso, Saké and Shoyu to Cosmetics: A Century of Science for Kojic Acid,” Natural Product Reports 23, no. 6 (2006): 1046–62.
  • H. Kayahara, N. Shibata, K. T. Asa, H. Maeda, T. Kotani, and I. Ichimoto, “Amino Acid and Peptide Derivatives of Kojic Acid and Their Antifungal Properties,” Agricultural and Biological Chemistry 54, no. 9 (1990): 2441–2.
  • Junichiro Marui, Noriko Yamane, Sumiko Ohashi-Kunihiro, Tomohiro Ando, Yasunobu Terabayashi, Motoaki Sano, Shinichi Ohashi, Eiji Ohshima, Kuniharu Tachibana, Yoshitaka Higa, et al. “Kojic Acid Biosynthesis in Aspergillus oryzae is Regulated by a Zn(II)(2)Cys(6) Transcriptional Activator and Induced by Kojic Acid at the Transcriptional Level,” Journal of Bioscience and Bioengineering 112, no. 1 (2011): 40–3.
  • R. L. Beard, and G. S. Walton, “Kojic Acid as an Insecticidal Mycotoxin,” Journal of Invertebrate Pathology 14, no. 1 (1969): 53–9.
  • M. Uher, V. Konecny, and O. Rajniakova, “Synthesis of 5-Hydroxy-2-Hydroxymethyl-4H-Pyran-4-One Derivatives with Pesticide Activity,” Chemical Papers 48, no. 4 (1994): 282.
  • R. M. Saleh, S. A. Kabli, S. M. Al-Garni, and S. A. Mohamed, “Screening and Production of Antibacterial Compound from Trichoderma Spp. against Human-Pathogenic Bacteria,” African Journal of Microbiology Research 5, no. 13 (2011): 1619–28.
  • R. Mohamad, M. S. Mohamed, N. Suhaili, M. M. Salleh, and A. B. Ariff, “Kojic Acid: Applications and Development of Fermentation Process for Production,” Biotechnology and Molecular Biology Reviews 5, no. 2 (2010): 24–37.
  • S. Katoh, J. Toyama, I. Kodama, K. Kamiya, T. Akita, and T. Abe, “Protective Action of Iron-Chelating Agents (Catechol, Mimosine, Deferoxamine, and Kojic Acid) against Ischemia-Reperfusion Injury of Isolated Neonatal Rabbit Hearts,” European Surgical Research 24, no. 6 (1992): 349–55.
  • B. Ochiai, M. Kamiya, and T. Endo, “Synthesis and Fe (III)‐Complexation Ability of Polyurethane Bearing Kojic Acid Skeleton in the Main Chain Prepared by Polyaddition of Aliphatic Hydroxyl Groups without Protection of Phenolic Hydroxyl Groups,” Journal of Polymer Science Part A: Polymer Chemistry 50, no. 17 (2012): 3493–8.
  • Y. Wei, C. Zhang, P. Zhao, X. Yang, and K. Wang, “A New Salicylic Acid-Derivatized Kojic Acid Vanadyl Complex: Synthesis, Characterization and anti-Diabetic Therapeutic Potential,” Journal of Inorganic Biochemistry 105, no. 8 (2011): 1081–5.
  • M. Fickova, E. Pravdova, L. Rondhal, M. Uher, and J. Brtko, “In Vitro Antiproliferative and Cytotoxic Activities of Novel Kojic Acid Derivatives: 5‐Benzyloxy‐2‐Selenocyanatomethyl and 5‐Methoxy‐2‐Selenocyanatomethyl‐4‐Pyranone,” Journal of Applied Toxicology 28, no. 4 (2008): 554–9.
  • V. P. Peroković, Ž. Car, A. Usenik, T. Opačak-Bernardi, A. Jurić, and S. Tomić, “Adamantyl Pyran-4-One Derivatives and Their in Vitro Antiproliferative Activity,” Molecular Diversity 24, no. 1 (2020): 253–63.
  • K. Piršelová, S. Baláž, E. Šturdík, R. Ujhelyová, M. Veverka, M. Uher, and J. Brtko, “Quantitative Structure‐Time‐Activity Relationships (QSTAR): pH‐Dependent Growth Inhibition of Escherichia coli by Ionizable and Nonionizable Kojic Acid Derivatives. Part II,” Quantitative Structure-Activity Relationships 16, no. 4 (1997): 283–9.
  • Y. Wu, Y. G. Shi, L. Y. Zeng, Y. Pan, X. Y. Huang, L. Q. Bian, Y. J. Zhu, R. R. Zhang, and J. Zhang, “Evaluation of Antibacterial and anti-Biofilm Properties of Kojic Acid against Five Food-Related Bacteria and Related Subcellular Mechanisms of Bacterial Inactivation,” Food Science and Technology International = Ciencia y Tecnologia de Los Alimentos Internacional 25, no. 1 (2019): 3–15.
  • A. P. D. Rodrigues, L. H. S. Farias, A. S. C. Carvalho, A. S. Santos, J. L. M. do Nascimento, and E. O. Silva, “A Novel Function for Kojic Acid, a Secondary Metabolite from Aspergillus Fungi, as Antileishmanial Agent,” PLoS One 9, no. 3 (2014): e91259.
  • J. H. Kim, P. K. Chang, K. L. Chan, N. C. Faria, N. Mahoney, Y. K. Kim, M. D. L. Martins, and B. C. Campbell, “Enhancement of Commercial Antifungal Agents by Kojic Acid,” International Journal of Molecular Sciences 13, no. 11 (2012): 13867–80.
  • M. D. Aytemir, E. Septioğlu, and Ü. Çaliş, “Synthesis and Anticonvulsant Activity of New Kojic Acid Derivatives,” Arzneimittel-Forschung 60, no. 1 (2010): 22–9.
  • J. S. Chen, C. I. Wei, R. S. Rolle, W. S. Otwell, M. O. Balaban, and M. R. Marshall, “Inhibitory Effect of Kojic Acid on Some Plant and Crustacean Polyphenol Oxidases,” Journal of Agricultural and Food Chemistry 39, no. 8 (1991): 1396–401.
  • M. Nakagawa, K. Kawai, and K. Kawai, “Contact Allergy to Kojic Acid in Skin Care Products,” Contact Dermatitis 32, no. 1 (1995): 9–13.
  • Y. Koba, B. Feroza, Y. Fujio, and S. Ueda, “Preparation of Koji from Corn Hulls for Alcoholic Fermentation without Cooking,” Journal of Fermentation Technology 64, no. 2 (1986): 175–8.
  • J. Cabanes, S. Chazarra, and F. R. A. N. C. I. S. C. O. Garcia, ‐Carmona, “Kojic Acid, a Cosmetic Skin Whitening Agent, Is a Slow-Binding Inhibitor of Catecholase Activity of Tyrosinase,” The Journal of Pharmacy and Pharmacology 46, no. 12 (1994): 982–5.
  • Y. S. Lee, J. H. Park, M. H. Kim, S. H. Seo, and H. J. Kim, “Synthesis of Tyrosinase Inhibitory Kojic Acid Derivative,” Archiv Der Pharmazie 339, no. 3 (2006): 111–4.
  • H. S. Rho, S. M. Ahn, D. S. Yoo, M. K. Kim, D. H. Cho, and J. Y. Cho, “Kojyl Thioether Derivatives Having Both Tyrosinase Inhibitory and anti-Inflammatory Properties,” Bioorganic & Medicinal Chemistry Letters 20, no. 22 (2010): 6569–71.
  • J. M. Noh, S. Y. Kwak, H. S. Seo, J. H. Seo, B. G. Kim, and Y. S. Lee, “Kojic Acid-Amino Acid Conjugates as Tyrosinase Inhibitors,” Bioorganic & Medicinal Chemistry Letters 19, no. 19 (2009): 5586–9.
  • Y. Li, X. Meng, G. Cai, B. Du, and B. Zhao, “CAN-Catalyzed Synthesis of 10-Arylpyrano[3,2-b]Chromene-4,9-Diones under Solvent-Free Conditions,” Research on Chemical Intermediates 40, no. 2 (2014): 699–709.
  • W. L. Li, L. Q. Wu, and F. L. Yan, “Alum-Catalyzed One-Pot Synthesis of Dihydropyrano[3,2-b]Chromene-Diones,” Journal of the Brazilian Chemical Society 22, no. 11 (2011): 2202–5.
  • X. J. Tu, W. Fan, W. J. Hao, B. Jiang, and S. J. Tu, “ Three-Component Bicyclization Providing an Expedient Access to Pyrano[2',3':5,6]Pyrano[2,3-b]Pyridines and Its Derivatives,” ACS Combinatorial Science 16, no. 11 (2014): 647–51.
  • J. G. Hall, and J. A. Reiss, “Elatenyne—a Pyrano[3,2-b]Pyranyl Vinyl Acetylene from the Red Alga Laurencia Elata,” Australian Journal of Chemistry 39, no. 9 (1986): 1401–9.
  • A. D. Wright, G. M. König, R. de Nys, and O. Sticher, “Seven New Metabolites from the Marine Red Alga Laurencia Majuscula,” Journal of Natural Products 56, no. 3 (1993): 394–401.
  • A. P. Kozikowski, and J. Lee, “A Synthetic Approach to the Cis-Fused Marine Pyranopyrans, (3E) and (3Z)-Dactomelyne. X-Ray Structure of a Rare Organomercurial,” The Journal of Organic Chemistry 55, no. 3 (1990): 863–70.
  • E. Lee, C. M. Park, and J. S. Yun, “Total Synthesis of Dactomelynes,” Journal of the American Chemical Society 117, no. 30 (1995): 8017–8.
  • D. R. da Rocha, A. C. de Souza, J. A. Resende, W. C. Santos, E. A. dos Santos, C. Pessoa, M. O. de Moraes, L. V. Costa-Lotufo, R. C. Montenegro, and V. F. Ferreira, “Synthesis of New 9-hydroxy-α- and 7-Hydroxy-β-Pyran Naphthoquinones and Cytotoxicity Against Cancer Cell Lines,” Organic & Biomolecular Chemistry 9, no. 11 (2011): 4315–22.
  • D. Kumar, P. Sharma, H. Singh, K. Nepali, G. K. Gupta, S. K. Jain, and F. Ntie-Kang, “The Value of Pyrans as Anticancer Scaffolds in Medicinal Chemistry,” RSC Advances 7, no. 59 (2017): 36977–99.
  • S. S. Bisht, N. Jaiswal, A. Sharma, S. Fatima, R. Sharma, N. Rahuja, A. K. Srivastava, V. Bajpai, B. Kumar, and R. P. Tripathi, “A Convenient Synthesis of Novel Pyranosyl homo-C-Nucleosides and Their Antidiabetic Activities,” Carbohydrate Research 346, no. 10 (2011): 1191–201.
  • S. B. Ferreira, F. d C. da Silva, F. A. Bezerra, M. C. Lourenço, C. R. Kaiser, A. C. Pinto, and V. F. Ferreira, “Synthesis of Alpha- and Beta-Pyran Naphthoquinones as a New Class of Antitubercular Agents,” Archiv Der Pharmazie 343, no. 2 (2010): 81–90.
  • S. Osman, B. J. Albert, Y. Wang, M. Li, N. L. Czaicki, and K. Koide, “Structural Requirements for the Antiproliferative Activity of pre-mRNA splicing inhibitor FR901464,” Chemistry (Weinheim an Der Bergstrasse, Germany) 17, no. 3 (2011): 895–904.
  • M. He, N. Yang, C. Sun, X. Yao, and M. Yang, “Modification and Biological Evaluation of Novel 4-Hydroxy-Pyrone Derivatives as Non-Peptidic HIV-1 Protease Inhibitors,” Medicinal Chemistry Research 20, no. 2 (2011): 200–9.
  • H. Hussain, S. Aziz, B. Schulz, and K. Krohn, “Synthesis of a 4H-Anthra [1, 2-b] Pyran Derivative and Its Antimicrobial Activity,” Natural Product Communications 6, no. 6 (2011): 1934578X1100600–3.
  • S. Wang, G. W. A. Milne, X. Yan, I. J. Posey, M. C. Nicklaus, L. Graham, and W. G. Rice, “Discovery of Novel, Non-Peptide HIV-1 Protease Inhibitors by Pharmacophore Searching,” Journal of Medicinal Chemistry 39, no. 10 (1996): 2047–54.
  • D. Azarifar, H. Ebrahimiasl, R. Karamian, and M. Ahmadi-Khoei, “s-Triazinium-Based Ionic Liquid Immobilized on Silica-Coated Fe3O4 Magnetic Nanoparticles: An Efficient and Magnetically Separable Heterogeneous Catalyst for Synthesis of 2-Amino-4,8-Dihydropyrano[3,2-b]Pyran-3-Carbonitrile Derivatives for Antioxidant and Antifungal Evaluation Studies,” Journal of the Iranian Chemical Society 16, no. 2 (2019): 341–54.
  • S. Asghari, R. Baharfar, M. Alimi, M. Ahmadipour, and M. Mohseni, “Synthesis and Antibacterial Activities of Pyrano[3,2-b]Pyranones from Kojic Acid, Ethyl Cyanoacetate, and Benzaldehydes in Aqueous K2CO3,” Monatshefte Für Chemie - Chemical Monthly 145, no. 8 (2014): 1337–42.
  • K. Parthasarathy, C. Praveen, C. Balachandran, P. Senthil Kumar, S. Ignacimuthu, and P. T. Perumal, “Cu(OTf)2 Catalyzed Three Component Reaction: Efficient Synthesis of spiro[indoline-3,4'-pyrano[3,2-b]pyran derivatives and their anticancer potency towards A549 human lung cancer cell lines,” Bioorganic & Medicinal Chemistry Letters 23, no. 9 (2013): 2708–13.
  • A. Chaudhary, “Recent Advances in the Exploitation of Kojic Acid in Multicomponent Reactions,” Current Organic Chemistry 24, no. 14 (2020): 1643–62.
  • M. Z. Piao, and K. Imafuku, “Convenient Synthesis of Amino-Substituted Pyranopyranones,” Tetrahedron Letters 38, no. 30 (1997): 5301–2.
  • B. Borah, K. D. Dwivedi, and L. R. Chowhan, “Applications of Pyrazolone in Multicomponent Reactions for the Synthesis of Dihydropyrano [2,3-c] Pyrazoles and Spiro-Pyrano [2, 3-c] Pyrazoles in Aqueous Medium,” Arkivoc 2021, no. 1 (2021): 273–328. (part i),
  • A. A. Shestopalov, L. A. Rodinovskaya, A. M. Shestopalov, and V. P. Litvinov, “One-Step Synthesis of Substituted 4,8-Dihydropyrano[3,2-b]Pyran-4-Ones,” Russian Chemical Bulletin 53, no. 3 (2004): 724–5.
  • N. R. Emmadi, K. Atmakur, G. K. Chityal, S. Pombala, and J. B. Nanubolu, “Synthesis and Cytotoxicity Evaluation of Highly Functionalized Pyranochromenes and Pyranopyrans,” Bioorganic & Medicinal Chemistry Letters 22, no. 23 (2012): 7261–4.
  • A. Chanda, and V. V. Fokin, “Organic Synthesis “On Water",” Chemical Reviews 109, no. 2 (2009): 725–48.
  • A. Rahmati, Z. Khalesi, and T. Kenarkoohi, “ Three-Component Synthesis of Spiro[Indoline-3,4'-Pyrano[3,2-b]pyran]- 2,8'-Diones Using a One-Pot Reaction,” Combinatorial Chemistry & High Throughput Screening 17, no. 2 (2014): 132–40.
  • R. Azimi, and R. Baharfar, “DABCO-Functionalized Mesoporous SBA-15: An Efficient and Recyclable Catalyst for the Synthesis of Spiro-Pyranoxindoles as Antioxidant Agents,” Canadian Journal of Chemistry 92, no. 12 (2014): 1163–8.
  • S. S. Mansoor, A. Ariffin, and S. P. N. Sudhan, “Silica-Bonded N-Propylpiperazine Sodium n-Propionate as an Efficient Recyclable Catalyst for One-Pot Synthesis of 2-Amino-4-Aryl-4H,8H-6-Methyl-8-Oxo-Pyrano[3,2-b]Pyran Derivatives,” Research on Chemical Intermediates 41, no. 9 (2015): 6687–705.
  • X. X. Meng, B. X. Du, B. Zhao, Y. L. Li, and C. F. Chen, “An Efficient Three-Component Synthesis of Amino-Substituted Pyrano[3,2-b]Pyranones,” Journal of Chemical Research 37, no. 10 (2013): 638–41.
  • Y. Sarrafi, E. Mehrasbi, and S. Z. Mashalchi, “MCM-41-SO3H: An Efficient, Reusable, Heterogeneous Catalyst for the One-Pot, Three-Component Synthesis of Pyrano[3,2-b]Pyrans,” Research on Chemical Intermediates 47, no. 4 (2021): 1729–13.
  • M. S. Reddy, N. S. Kumar, and L. R. Chowhan, “Heterogeneous Graphene Oxide as Recyclable Catalyst for Azomethine Ylide Mediated 1,3 Dipolar Cycloaddition Reaction in Aqueous Medium,” RSC Advances 8, no. 62 (2018): 35587–93.
  • S. M. Baghbanian, N. Rezaei, and H. Tashakkorian, “Nanozeolite Clinoptilolite as a Highly Efficient Heterogeneous Catalyst for the Synthesis of Various 2-Amino-4H-Chromene Derivatives in Aqueous Media,” Green Chemistry 15, no. 12 (2013): 3446–58.
  • S. M. Baghbanian, “Synthesis, Characterization, and Application of Cu2O and NiO Nanoparticles Supported on Natural Nanozeolite Clinoptilolite as a Heterogeneous Catalyst for the Synthesis of Pyrano[3,2-b]Pyrans and Pyrano[3,2-c] Pyridones,” RSC Advances 4, no. 103 (2014): 59397–404.
  • B. Sadeghi, P. F. Nezhad, and S. Hashemian, “SiO2–OSO3H Nanoparticles: An Efficient, Versatile and New Reagent for the One-Pot Synthesis of 2-Amino-8-Oxo-4,8-Dihydropyrano[3,2-b]Pyran-3-Carbonitrile Derivatives in Water, a Green Protocol,” Journal of Chemical Research 38, no. 1 (2014): 54–7.
  • S. Asghari, and M. Mohammadnia, “Synthesis and Characterization of Pyridine-4-Carboxylic Acid Functionalized Fe3O4 Nanoparticles as a Magnetic Catalyst for Synthesis of Pyrano[3,2-b]Pyranone Derivatives under Solvent-Free Conditions,” Research on Chemical Intermediates 42, no. 3 (2016): 1899–911.
  • R. Teimuri-Mofrad, S. Esmati, M. Rabiei, and M. Gholamhosseini-Nazari, “Efficient Synthesis of New Pyrano[3,2-b]Pyran Derivatives via Fe3O4@ SiO2-IL-Fc Catalyzed Three-Component Reaction,” Heterocyclic Communications 23, no. 6 (2017): 439–44.
  • M. Zirak, M. Azinfar, and M. Khalili, “Three-Component Reactions of Kojic Acid: efficient Synthesis of Dihydropyrano[3,2-b]Chromenediones and Aminopyranopyrans Catalyzed with nano-Bi2O3-ZnO and nano-ZnO,” Current Chemistry Letters 6, no. 3 (2017): 105–16.
  • H. R. Molaei, B. Sadeghi, and M. H. Moslemin, “Synthesis of Pyrano [3, 2-B] Pyran Derivatives by a Sequential One-Pot Reaction Using Tin Tetrachloride Supported on Nano Silica Gel, a Green Protocol,” Bulgarian Chemical Communications, Special Issue J 41 (2017) : 308–14.
  • S. H. Banitaba, “A Mild Protocol for the Preparation of 2-Amino-Dihydropyrano[3,2-b]Pyran-3-Carbonitriles via Cobalt Nanoparticles-Catalyzed Multi-Component Reaction in Water,” Iranian Chemical Communication 6, (2018) : 389–401.
  • B. Eftekhari-Sis, M. S. Karajabad, and S. Haqverdi, “Pyridylmethylaminoacetic Acid Functionalized Fe3O4 Magnetic Nanorods as an Efficient Catalyst for the Synthesis of 2-Aminochromene and 2-Aminopyran Derivatives,” Scientia Iranica 24, no. 6 (2017): 3022–31.
  • R. Teimuri-Mofrad, S. Esmati, M. Rabiei, and M. Gholamhosseini-Nazari, “Ferrocene-Containing Ionic Liquid Supported on Silica Nanospheres (SiO2@Imid-Cl@Fc) as a Mild and Efficient Heterogeneous Catalyst for the Synthesis of Pyrano[3,2-b]Pyran Derivatives under Ultrasound Irradiation,” Journal of Chemical Research 42, no. 1 (2018): 7–12.
  • F. Rigi, and H. R. Shaterian, “One‐Pot Synthesis of 2‐Amino‐4,8‐Dihydropyrano[3, 2‐b]Pyrans and Pyridopyrimidines under Mild Conditions,” Journal of the Chinese Chemical Society 66, no. 4 (2019): 434–7.
  • S. R. Shafe Mehrabadi, B. Sadeghi, and S. Zavar, “Nano-Rice Bran/TiCl4 a Highly Efficient Catalyst for the One-Pot Synthesis of Pyrano[3,2-b]Pyrans,” Quarterly Journal of Applied Chemical Research 12, no. 3 (2018): 65–73.
  • S. Dehghanpoor, B. Sadeghi, and M. H. Mosslemin, “Green Nano-Silica Sulfuric Acid Catalyzed Synthesis of New 6-Amino-8-Aryl-7-(Benzenesulfonyl)-2-(Hydroxymethyl)-Pyrano[3,2-b]Pyran-4(8H)-One Derivatives,” Russian Journal of Organic Chemistry 55, no. 12 (2019): 1957–60.
  • B. Sadeghi, “Synthesis of Novel 6-Amino-2-(Hydroxymethyl)-8-Aryl-7-(Phenylsulfonyl)Pyrano[3,2-b]Pyran-4(8H)-One Derivatives Catalyzed by Nano-cellulose-OSO3H,” Research on Chemical Intermediates 45, no. 10 (2019): 4897–906.
  • M. Gholamhosseini-Nazari, S. Esmati, K. D. Safa, A. Khataee, and R. Teimuri-Mofrad, “Fe3O4@SiO2-BenzIm-Fc[Cl]/ZnCl2: A Novel and Efficient Nano-Catalyst for the One-Pot Three-Component Synthesis of Pyran Annulated Bis-Heterocyclic Scaffolds under Ultrasound Irradiation,” Research on Chemical Intermediates 45, no. 4 (2019): 1841–62.
  • F. O. Memar, L. Khazdooz, A. Zarei, and A. Abbaspourrad, “Green Synthesis of Pyrano[3,2-b]Pyran Derivatives Using Nano Si–Mg–Fluorapatite Catalyst and the Evaluation of Their Antibacterial and Antioxidant Properties,” Medicinal Chemistry Research 29, no. 10 (2020): 1792–803.
  • M. M. Li, C. S. Duan, Y. Q. Yu, and D. Z. Xu, “A General and Efficient One-Pot Synthesis of Spiro[2-Amino-4H-Pyrans] via Tandem Multi-Component Reactions Catalyzed by Dabco-Based Ionic Liquids,” Dyes and Pigments 150, (2018) : 202–6.
  • S. Babaee, M. A. Zolfigol, M. Zarei, M. Abbasi, and Z. Najafi, “Synthesis of Pyridinium-Based Salts: Catalytic Application at the Synthesis of Six Membered O-Heterocycles,” Molecular Catalysis 475, (2019) : 110403.
  • B. Borah, K. D. Dwivedi, and L. R. Chowhan, “Recent Approaches in the Organocatalytic Synthesis of Pyrroles,” RSC Advances 11, no. 22 (2021): 13585–601.
  • M. N. Khan, S. Pal, S. Karamthulla, and L. H. Choudhury, “Imidazole as Organocatalyst for Multicomponent Reactions: diversity Oriented Synthesis of Functionalized Hetero and Carbocycles Using in Situ-Generated Benzylidenemalononitrile Derivatives,” RSC Advances 4, no. 8 (2014): 3732–41.
  • F. A. A. Elsoud, M. Abd-Elmonem, M. A. Elsebaa, and K. U. Sadek, “Zn(L-Proline)2: An Efficient and Reusable Organocatalyst for the Synthesis of Polyfunctionally Substituted Pyrans and 2-Amino-4-Aryl-8-Oxo-4,8-Dihydropyrano[3,2-b]Pyran Derivatives,” European Journal of Chemistry 10, no. 2 (2019): 166–70.
  • K. O. Aghbash, N. N. Pesyan, and B. Notash, “The Clean Synthesis and Confirmatory Structural Characterization of New 2-Amino-4,8-Dihydropyrano[3,2-b]Pyran-3-Cyano Based on Kojic Acid,” Monatshefte Für Chemie – Chemical Monthly 149, no. 11 (2018): 2059–67.
  • E. A. Kataev, M. R. Reddy, G. N. Reddy, V. H. Reddy, C. S. Reddy, and B. V. S. Reddy, “Supramolecular Catalysis by β-Cyclodextrin for the Synthesis of Kojic Acid Derivatives in Water,” New Journal of Chemistry 40, no. 2 (2016): 1693–7.
  • K. D. Dwivedi, B. Borah, and L. R. Chowhan, “Ligand Free One-Pot Synthesis of Pyrano[2,3-c]pyrazoles in Water Extract of Banana Peel (WEB): A Green Chemistry Approach,” Frontiers in Chemistry 7, (2019) : 944.
  • K. D. Dwivedi, M. S. Reddy, N. S. Kumar, and L. R. Chowhan, “Facile Synthesis of 3‐Hydroxy Oxindole by a Decarboxylative Aldol Reaction of β‐Ketoacid and Isatin in WERSA,” ChemistrySelect 4, no. 29 (2019): 8602–5.
  • S. Asghari, and M. Ahmadipour, “A Facile One-Pot Synthesis of Functionalized 4,8-Dihydropyrano[3,2-b]-Pyran-4-Ones,” Acta Chimica Slovenica 57, no. 4 (2010): 953–956.
  • K. O. Aghbash, N. N. Pesyan, G. Marandi, N. Dege, and E. Şahin, “The Clean and Mild Synthesis, Crystal Structure, and Intra-Molecular Hydrogen Bond Study of Substituted New 4,8-Dihydropyrano[3,2-b]-Pyrans Containing Chlorokojic Acid Moiety,” Research on Chemical Intermediates 45, no. 9 (2019): 4543–54.
  • S. H. Banitaba, J. Safari, and S. D. Khalili, “Ultrasound Promoted One-Pot Synthesis of 2-Amino-4,8-Dihydropyrano[3,2-b]Pyran-3-Carbonitrile Scaffolds in Aqueous Media: A Complementary 'Green Chemistry' Tool to Organic Synthesis,” Ultrasonics Sonochemistry 20, no. 1 (2013): 401–7.
  • A. de la Hoz, A. Diaz-Ortiz, and A. Moreno, “Microwaves in Organic Synthesis. Thermal and Non-Thermal Microwave Effects,” Chemical Society Reviews 34, no. 2 (2005): 164–78.
  • A. M. Akondi, Sowmya. Mekala, Mannepalli Lakshmi. Kantam, Rajiv. Trivedi, L. Raju. Chowhan, and Amitava. Das, “An Expedient Microwave Assisted Regio-and Stereoselective Synthesis of Spiroquinoxaline Pyrrolizine Derivatives and their AChE Inhibitory Activity,” New Journal of Chemistry 41, no. 2 (2017): 873–8.
  • P. R. Likhar, G. N. Reddy, and M. R. Reddy, “Microwave-Assisted, Water-Mediated Michael Addition for Synthesis of Kojic Acid Derivatives,” Research on Chemical Intermediates 42, no. 6 (2016): 5983–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.