154
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

[Et3NH][HSO4]-Catalyzed One-Pot Solvent Free Syntheses of Functionalized [1,6]-Naphthyridines and Biological Evaluation

, , &
Pages 6043-6059 | Received 13 Apr 2021, Accepted 14 Aug 2021, Published online: 02 Sep 2021

References

  • B. M. Teipel, J. Teixido, R. Pascual, M. Mora, J. Pujola, T. Fujimoto, J. I. Borrell, and E. L. Michelotti, “2-Methoxy-6-Oxo-1,4,5,6-Tetrahydropyridine-3-Carbonitriles: Versatile Starting Materials for the Synthesis of Libraries with Diverse Heterocyclic Scaffolds,”J. Combinatorial Chemistry 7, no. 3 (2005): 436–48.
  • Y. Zhang, R. Sun, X. Kang, D. H. Wang, and Y. Chen, “A Water-Soluble 1,8-Naphthyridine-Based Imidazolium Molecular Gripper for Fluorescence Sensing and Discriminating of GMP,” Dyes and Pigments 174, (2020): 108103.
  • J. Fiorito, J. Vendome, F. Saeed, A. Staniszewski, H. Zhang, S. Yan, S. X. Deng, O. Arancio, and D. W. Landry, “Identification of a Novel 1,2,3,4-Tetrahydrobenzo[b][1,6]naphthyridine Analogue as a Potent Phosphodiesterase 5 Inhibitor with Improved Aqueous Solubility for the Treatment of Alzheimer's Disease,” Journal of Medicinal Chemistry 60, no. 21 (2017): 8858–75.
  • C. D. d. M. Oliveira-Tintino, S. R. Tintino, D. F. Muniz, C. R. D. S. Barbosa, R. L. S. Pereira, I. M. Begnini, R. A. Rebelo, L. E. da Silva, S. L. Mireski, M. C. Nasato, et al. “Do 1,8-Naphthyridine Sulfonamides Possess an Inhibitory Action Against Tet(K) and MsrA Efflux Pumps in Multiresistant Staphylococcus Aureus Strains? ?,” Microbial Pathogenesis 147, (2020): 104268.
  • E. L. Meredith, O. Ardayfio, K. Beattie, M. R. Dobler, I. Enyedy, C. Gaul, V. Hosagrahara, C. Jewell, K. Koch, W. Lee, et al. “Identification of Orally Available Naphthyridine Protein Kinase D Inhibitors,”Journal of Medicinal Chemistry 53, no. 15 (2010): 5400–21.
  • X. Y. Mu, J. Xu, Y. J. Zhou, Y. L. Li, Y. Liu, and X. S. Wang, “Convenient Synthesis of Naphtho[1,6] Naphthyridine Derivatives under Catalyst-Free Conditions,”Research on Chemical Intermediates 41, no. 3 (2015): 1703–14.
  • T. Chen, L. S. Zhuo, P. F. Liu, W. R. Fang, Y. Li, and W. Huang, “Discovery of 1,6-Naphthyridinone-Based MET Kinase Inhibitor Bearing Quinoline Moiety as Promising Antitumor Drug Candidate,” European Journal of Medicinal Chemistry 192 (2020): 112174.
  • Michael G. Thomas, Manu De Rycker, Richard J. Wall, Daniel Spinks, Ola Epemolu, Sujatha Manthri, Suzanne Norval, Maria Osuna-Cabello, Stephen Patterson, Jennifer Riley, et al. “Identification and Optimization of a Series of 8-Hydroxy Naphthyridines with Potent In Vitro Antileishmanial Activity: Initial SAR and Assessment of In Vivo Activity,” Journal of Medicinal Chemistry 63, no. 17 (2020): 9523–39.
  • Kevin M. Peese, Christopher W. Allard, Timothy Connolly, Barry L. Johnson, Chen Li, Manoj Patel, Margaret E. Sorensen, Michael A. Walker, Nicholas A. Meanwell, Brian McAuliffe, et al. “5,6,7,8-Tetrahydro-1,6-Naphthyridine Derivatives as Potent HIV-1-Integrase-Allosteric-Site Inhibitors,” Journal of Medicinal Chemistry 62, no. 3 (2019): 1348–61.
  • V. Litvinov, “Advances in the Chemistry of Naphthyridines,” Advances in Heterocyclic Chemistry 91 (2006): 189–300.
  • M. V. Fedorov, and A. A. Kornyshev, “Ionic Liquids at Electrified Interfaces,”Chemical Reviews 114, no. 5 (2014): 2978–3036.
  • X. X. Han, H. Du, C. T. Hung, L. L. Liu, P. H. Wu, D. H. Ren, S. J. Huang, and S. B. Liu, “Syntheses of Novel Halogen-Free Bronsted-Lewis Acidic Ionic Liquid Catalysts and Their Applications for Synthesis of Methyl Caprylate,” Green Chemistry 17, no. 1 (2015): 499–508.
  • Z. N. Siddiqui, and K. Khan, “[Et3NH][HSO4]-Catalyzed Efficient, Eco-Friendly, and Sustainable Synthesis of Quinoline Derivatives via Knoevenagel Condensation,” ACS Sustainable Chemistry & Engineering 2, no. 5 (2014): 1187–94.
  • Z. K. Jaberi, B. Masoudi, A. Rahmani, and K. Alborzi, “Triethylammonium Hydrogen Sulfate [Et3NH][HSO4] as an Efficient Ionic Liquid Catalyst for the Synthesis of Coumarin Derivatives,”Polycyclic Aromatic Compounds 40, no. 1 (2020): 99–107.
  • S. K. Patil, D. V. Awale, M. M. Vadiyar, S. A. Patil, S. C. Bhise, and S. S. Kolekar, “Simple Protic Ionic Liquid [Et3NH][HSO4] as a Proficient Catalyst for Facile Synthesis of Biscoumarins,” Research on Chemical Intermediates 43, no. 10 (2017): 5365–76.
  • Z. Zhou, and X. Deng, “[Et3NH][HSO4] Catalyzed Efficient and Green Synthesis of 1,8-Dioxo-Octahydroxanthenes,” Journal of Molecular Catalysis A: Chemical 367 (2013): 99–102.
  • Ali Mohammed Malla, Mehtab Parveen, Faheem Ahmad, Shaista Azaz, and Mahboob Alam, “Et3NH][HSO4]-Catalyzed Eco-Friendly and Expeditious Synthesis of Thiazolidine and Oxazolidine Derivatives,” RSC Advances 5, no. 25 (2015): 19552–69.
  • M. Parveen, S. Azaz, A. M. Malla, F. Ahmad, P. Sidonio, P. da Silva, and M. R. Silva, “Solvent-Free, [Et3NH][HSO4] Catalyzed Facile Synthesis of Hydrazone Derivatives,”New Journal of Chemistry 39, no. 1 (2015): 469–81.
  • Z. Zhou, and Y. Zhang, “An Eco-Friendly One-Pot Synthesis of 4,4'-(Arylmethylene)Bis(1h-Pyrazol-5-Ols) Using [Et3NH][HSO4] as a Recyclable Catalyst,” Journal of the Chilean Chemical Society 60, no. 3 (2015): 2992–6.
  • E. Hadadianpour, and B. Pouramiri, “Facile, Efficient and One-Pot Access to Diverse New Functionalized Aminoalkyl and Amidoalkyl Naphthol Scaffolds via Green Multicomponent Reaction Using Triethylammonium Hydrogen Sulfate ([Et3NH][HSO4]) as an Acidic Ionic Liquid under Solvent-Free Conditions,”Molecular Diversity 24, no. 1 (2020): 241–52.
  • N. S. Suryawanshi, P. Jain, M. Singhal, and I. Khan, “Mannich Synthesis under Ionic Liquid [Et3NH][HSO4] Catalysis,” IOSR Journal of Applied Chemistry 1, no. 2 (2012): 18–23.
  • F. G. Nikfarjam, M. M. Hashemi, and A. Ezabadi. “One-Pot Synthesis of Biologically Important Xanthene Derivatives Using [(Et3N)2SO][HSO4]2 as a Novel and Green IL-Based Catalyst under Solvent-Free Conditions,” Journal of Nanomedicine 3, no. 1 (2020) 1020.
  • B. Pouramiri, R. Fayazi, and E. T. Kermani, “Facile and Rapid Synthesis of 3,4-Dihydropyrimidin-2(1h)-One Derivatives Using [Et3NH][HSO4] as Environmentally Benign and Green Catalyst,” Iranian Journal of Chemistry and Chemical Engineering 37 (2018): 159–67.
  • J. Weng, C. Wang, H. Li, and Y. Wang, “Novel Quaternary Ammonium Ionic Liquids and Their Use as Dual Solvent-Catalysts in the Hydrolytic Reaction,” Green Chemistry 8, no. 1 (2006): 96–9.
  • S. Salahi, M. T. Maghsoodlou, N. Hazeri, M. Lashkari, R. Doostmohammadi, A. Kanipour, F. Farhadpour, and A. Shojaei, “Two Ammonium Ionic Liquids as Efficient Catalysts for the One-Pot Green Synthesis of 3,4,5-Substituted Furan-2(5H)-Ones,” Bulgarian Chemical Communications 48 (2016): 364–8.
  • M. H. Shaikh, D. D. Subhedar, F. A. K. Khan, J. N. Sangshetti, and B. B. Shingate, “[Et3NH][HSO4]-Catalyzed One-Pot, Solvent-Free Synthesis and Biological Evaluation of α-Amino Phosphonates,” Research on Chemical Intermediates 42, no. 5 (2016): 5115–31.
  • (a) C. Li, F. Zhang and Z. Shen, “An Efficient Strategy for the Synthesis of Naphtho[2,3-b][1,6]Naphthyridines Promoted by Acetic Acid”, Synlett 32 (2021): 1117–1122; (b) C. Li, C. Qi and F. Zhang, “An Efficient Strategy for the Synthesis of 1,6-Naphthyridine-2,5-Dione Derivatives Under Ultrasound Irradiation” Synlett 31 (2020): 1313–1317; (c) C. Li, C. Qi and F. Zhang, “Ultrasonic Promoted Synthesis of 1,6-Naphthyridine Derivatives Catalyzed by Solid Acid in Water” Tetrahedron Letters 61 (2020): 152144; (d) K. N. Vennila, B. Selvakumar, V. Satish, D. Sunny, S. Madhuri and K. P. Elango, “Structure-Based Design, Synthesis, Biological Evaluation, and Molecular Docking of Novel 10-Methoxy Dibenzo[b,h][1,6]Naphthyridinecarboxamides” Medicinal Chemistry Research 30 (2021): 133–141; (e) S. Vanlaer, A. Voet, C. Gielens, M. D. Maeyer and F. Compernolle, “Bridged 5,6,7,8‐Tetrahydro‐1,6‐Naphthyridines, Analogues of Huperzine A: Synthesis, Modelling Studies and Evaluation as Inhibitors of Acetylcholinesterase”, European Journal of Organic Chemistry (2009): 643–654; (f) J. A. Turner, “A General Approach to the Synthesis of 1,6-, 1,7-, and 1,8-Naphthyridines”, Journal of Organic Chemistry 55 (1990): 4744–4750; (g) Q. Zhang, Q. Shi, H. R. Zhang and K. K. Wang, “Synthesis of 6H-indolo[2,3-b][1,6]Naphthyridines and Related Compounds as the 5-aza Analogues of Ellipticine Alkaloids”, Journal of Organic Chemistry 65 (2000): 7977–7983; (h) H. Suzuki, N. Sakai, R. Iwahara, T. Fujiwaka, M. Satoh, A. Kakehi and T. Konakahara, “Novel synthesis of 7-fluoro-8-(trifluoromethyl)- 1H-1,6-Naphthyridin-4-One Derivatives: Intermolecular Cyclization of an N-silyl-1-Azaallyl Anion with Perfluoroalkene and Subsequent Intramolecular Skeletal Transformation of the Resulting Pentasubstituted Pyridines”, Journal of Organic Chemistry 72 (2007): 5878–5881; (i) Y. Zhou, J. A. Porco and J. K. Snyder, “Synthesis of 5,6,7,8-Tetrahydro-1,6-Naphthyridines and Related Heterocycles by Cobalt-Catalyzed [2 + 2+2] Cyclizations”, Organic Letters 9 (2007): 393–396; (j) V. J. Colandrea and E. M. Naylor, “Synthesis and Regioselective Alkylation of 1,6- and 1,7-Naphthyridines”, Tetrahedron Letters 41 (2000): 8053–8057.
  • (a) A. Chandra, B. Singh, S. Upadhyay and R. M. Singh, “Copper-Free Sonogashira Coupling of 2-Chloroquinolines with Phenyl Acetylene and Quick Annulation to benzo[b][1,6]Naphthyridine Derivatives in Aqueous Ammonia”, Tetrahedron, 64, no. 51 (2008): 11680–11685; (b) G. Sabitha, E. R. Reddy, C. Maruthi and J. S. Yadav, “Bismuth(III) Chloride-Catalyzed Intramolecular Hetero-Diels-Alder Reactions: A Novel Synthesis of Hexahydrodibenzo[b,h][1,6]Naphthyridines”, Tetrahedron Letters 43 (2002): 1573–1575.
  • (a) S. V. Akolkar, A. A. Nagargoje, V. S. Krishna, D. Sriram, J. N. Sangshetti, M. Damale and B. B Shingate, “New N-Phenylacetamide-Incorporated 1,2,3-triazoles: [Et3NH][OAc]-Mediated Efficient Synthesis and Biological Evaluation”, RSC Advances, 9, no. 38 (2019): 22080–22091; (b) D. D. Subhedar, M. H. Shaikh, M. A. Arkile, A. Yeware, D. Sarkar and B. B. Shingate, “Facile Synthesis of 1,3-thiazolidin-4-ones as Antitubercular Agents” Bioorganic & Medicinal Chemistry Letters 26 (2016): 1704–1708; (c) D. D. Subhedar, M. H. Shaikh, B. B. Shingate, L. Nawale, D. Sarkar, V. M. Khedkar, F. A. K. Khan and J. N. Sangshetti, “Quinolidene-Rhodanine Conjugates: Facile Synthesis and Biological Evaluation”, European Journal of Medicinal Chemistry 125 (2017): 385–399; (d) D. D. Subhedar, M. H. Shaikh, L. Nawale, A. Yeware, D. Sarkar, F. A. K. Khan, J. N. Sangshetti and B. B. Shingate, “Novel Tetrazoloquinoline-Rhodanine Conjugates: Highly Efficient Synthesis and Biological Evaluation”, Bioorganic & Medicinal Chemistry Letters 26 (2016): 2278–2283; (e) D. D. Subhedar, M. H. Shaikh, F. A. K. Khan, J. N. Sangshetti, V. M. Khedkar and B. B. Shingate, “Facile Synthesis of new N-sulfonamidyl-4-Thiazolidinone Derivatives and Their Biological Evaluation”, New Journal of Chemistry 40 (2016): 3047–3058; (f) D. D. Subhedar, M. H. Shaikh, L. Nawale, A. Yeware, D. Sarkar, and B. B. Shingate, “[Et3NH][HSO4] Catalyzed Efficient Synthesis of 5-Arylidene-Rhodanine Conjugates and Their Antitubercular Activity”, Research on Chemical Intermediate 42 (2016): 6607–6626; (g) D. D. Subhedar, M. H. Shaikh, A. A. Nagargoje, S. V. Akolkar, S. G. Bhansali, D. Sarkar and B. B Shingate, “Amide-Linked Monocarbonyl Curcumin Analogues: Efficient Synthesis, Antitubercular Activity and Molecular Docking Study”, Polycyclic Aromatic Compounds (2020).
  • (a) C. Mukhopadhyaya, P. Das and R. J. Butcher, “An Expeditious and Efficient Synthesis of Highly Functionalized [1,6]-Naphthyridines Under Catalyst-Free Conditions in Aqueous Medium”, Organic Letters, 13, no. 17 (2011): 4664–4667; (b) A. M. A. Hameed, “Rapid Synthesis of 1,6-Naphthyridines by Grindstone Chemistry”, Environmental Chemistry Letters 13 (2015): 125–129; (c) P. Das, T. Chaudhuri, and C. Mukhopadhyaya, “Pseudo-Five-Component Domino Strategy for the Combinatorial Library Synthesis of [1,6] Naphthyridines-an on-Water Approach” ACS Combinatorial Science, 16 (2014): 606–613.
  • (a) Schrodinger Suite 2015-4 QM-Polarized Ligand Docking protocol; Glide version 6.9 (Schrodinger, LLC: New York, NY, 2006); Jaguar version 9.0 (Schrodinger, LLC: New York, NY, 2015); QSite version 6.9 (Schrodinger, LLC: New York, NY, 2015); (b) R. A. Friesner, R. B. Murphy, M. P. Repasky, L. L. Frye, J. R. Greenwood, T. A. Halgren, P. C. Sanschagrin and D. T. Mainz, “Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein-Ligand Complexes,” Journal of Medicinal Chemistry, 49, no. 21 (2006): 6177–6196.
  • X. Qiu, C. A. Janson, W. W. Smith, M. Head, J. Lonsdale, and A. K. Konstantinidis, “Refined Structures of Beta-Ketoacyl-Acyl Carrier Protein Synthase III ,” Journal of Molecular Biology 307, no. 1 (2001): 341–56.
  • NCCLS (National Committee for Clinical Laboratory Standards), Performance standards for antimicrobial susceptibility testing: twelfth informational supplement, 2002, 1-56238-454-6 M100-S12(M7).
  • M. Burits, and F. Bucar, “Antioxidant Activity of Nigella Sativa Essential Oil,” Phytotherapy Research 14, no. 5 (2000): 323–8.
  • C. A. Lipinski, L. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings,” Advanced Drug Delivery Reviews 46, no. 1–3 (2001): 3–26.
  • Molinspiration Chemoinformatics Brastislava, Slovak Republic, Available from: http://www.molinspiration.com/cgi-bin/properties; 2014.
  • Y. H. Zhao, M. H. Abraham, J. Le, A. Hersey, C. N. Luscombe, G. Beck, B. Sherborne, and I. Cooper, “Rate Limited Steps of Human Oral Absorption and QSAR Studies,” Pharmaceutical Research 19, no. 10 (2002): 1446–57.
  • Drug-likeness and molecular property prediction, available from: http://www.molsoft.com/mprop/
  • P. Ertl, B. Rohde, and P. Selzer, “Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties,” Journal of Medicinal Chemistry 43, no. 20 (2000): 3714–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.