124
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Comparative Green and Conventional Synthesis of 2-Hydroxy-1-Naphthaldehyde Based Barbiturates and Their DFT Study

, , , , &
Pages 6372-6388 | Received 25 Jul 2021, Accepted 09 Sep 2021, Published online: 01 Oct 2021

References

  • S. A. Yamashkin, and E. A. Oreshkina, “Traditional and Modern Approaches to the Synthesis of Quinoline Systems by the Skraup and Doebner-Miller Methods (Review),” Chemistry of Heterocyclic Compounds 42, no. 6 (2006): 701–18.
  • M. Nasrollahzadeh, S. M. Sajadi, and M. Maham, “Tamarix Gallica Leaf Extract Mediated Novel Route for Green Synthesis of CuO Nanoparticles and Their Application for N-Arylation of Nitrogen-Containing Heterocycles under Ligand-Free Conditions,” RSC Advances 5, no. 51 (2015): 40628–35.
  • M. Nasrollahzadeh, M. Sajjadi, S. M. Sajadi, M. Atarod, and Z. Issaabadi, An Introduction to Green Nanotechnology, 1st ed. Vol. 28 (Cambridge, MA: Academic Press, 2019).
  • S. Thiyagarajan, and C. Gunanathan, “Catalytic Cross-Coupling of Secondary Alcohols,” Journal of the American Chemical Society 141, no. 9 (2019): 3822–7.
  • D. E. Boldrini, S. Angeletti, P. M. Cervellini, and D. M. Reinoso, “Highly Ordered Mesoporous Al-MCM-41 Synthesis through Valorization of Natural Sediment,” ACS Sustainable Chemistry & Engineering 7, no. 5 (2019): 4684–91.
  • P. K. Sahu, “A Green Approach to the Synthesis of a Nano Catalyst and the Role of Basicity, Calcination, Catalytic Activity and Aging in the Green Synthesis of 2-Aryl Bezimidazoles, Benzothiazoles and Benzoxazoles,” RSC Advances 7, no. 67 (2017): 42000–12.
  • G. Mohammadi Ziarani, F. Aleali, and N. Lashgari, “Recent Applications of Barbituric Acid in Multicomponent Reactions,” RSC Advances 6, no. 56 (2016): 50895–922.
  • S. K. Attia, A. T. Elgendy, and S. A. Rizk, “Efficient Green Synthesis of Antioxidant Azacoumarin Dye Bearing Spiro-Pyrrolidine for Enhancing Electro-Optical Properties of Perovskite Solar Cells,” Journal of Molecular Structure 1184, no. 15 (2019): 583–92.
  • M. R. Bhosle, P. Andil, D. Wahul, G. M. Bondle, A. Sarkate, and S. V. Tiwari, “Straightforward Multicomponent Synthesis of Pyrano[2,3-d]Pyrimidine-2,4,7-Triones in β-Cyclodextrin Cavity and Evaluation of Their Anticancer Activity,” Journal of the Iranian Chemical Society 16, no. 7 (2019): 1553–61.
  • H. Varshney, A. Ahmad, A. Rauf, F. M. Husain, and I. Ahmad, “Synthesis and Antimicrobial Evaluation of Fatty Chain Substituted 2,5-Dimethyl Pyrrole and 1,3-Benzoxazin-4-One Derivatives,” Journal of Saudi Chemical Society 21 (2017): S394–S02.
  • Z. N. Siddiqui, “One Pot Synthesis of New Benzopyranopyridines via Friedlander Condensation,” Tetrahedron Letters 53, no. 37 (2012): 4974–8.
  • D. Agarwal, and V. K. Kasana, “Synthesis and FT-IR, SEM, EDS Studies of Heterogeneous Catalyst- CaCl2.2H2O Supported on Rice Husk: A Highly Efficient and Economical Catalyst for N-Formylation of Amines at Room Temperature,” International Research Journal of Pure and Applied Chemistry 18, no. 1 (2019): 1–10.
  • M. Dash, F. Chiellini, R. M. Ottenbrite, and E. Chiellini, “Chitosan-A Versatile Semi-Synthetic Polymer in Biomedical Applications,” Progress in Polymer Science 36, no. 8 (2011): 981–1014.
  • M. Lee, B. Y. Chen, and W. Den, “Chitosan as a Natural Polymer for Heterogeneous Catalysts Support: A Short Review on Its Applications,” Applied Sciences (Switzerland) 5, no. 4 (2015): 1272–83.
  • N. Ahmed, and Z. N. Siddiqui, “Cerium Supported Chitosan as an Efficient and Recyclable Heterogeneous Catalyst for Sustainable Synthesis of Spiropiperidine Derivatives,” ACS Sustainable Chemistry & Engineering 3, no. 8 (2015): 1701–7.
  • G. Huai-Min, and C. Xian-Su, “Study of Cobalt (II)-Chitosan Coordination Polymer and Its Catalytic Activity and Selectivity for Vinyl Monomer Polymerization,” Polymers for Advanced Technologies 15, no. 12 (2004): 89–92.
  • T. Tamoradi, M. Ghadermazi, and A. Ghorbani-Choghamarani, “SBA‐15@ABA-M (M = Cu, Ni and Pd): Three Efficient, Novel and Green Catalysts for Oxidative Coupling of Thiols under Mild Reaction Conditions,” Journal of Saudi Chemical Society 23, no. 7 (2019): 846–55.
  • Rahila, P. Rai, A. Ibad, H. Sagir, and I. R. Siddiqui, “Chitosan-CTAB: An Efficient Aqueous Micellar System for the Sequential One-Pot Synthesis of Highly Functionalized 2-Amino-4H-Pyrans,” ChemistrySelect 1, no. 7 (2016): 1300–4.
  • B. Sakthivel, and A. Dhakshinamoorthy, “Chitosan as a Reusable Solid Base Catalyst for Knoevenagel Condensation Reaction,” Journal of Colloid and Interface Science 485 (2017): 75–80.
  • B. V. S. Reddy, A. Venkateswarlu, G. N. Reddy, and Y. V. R. Reddy, “Chitosan-SO3H: An Efficient, Biodegradable, and Recyclable Solid Acid for the Synthesis of Quinoline Derivatives via Friedländer Annulation,” Tetrahedron Letters 54, no. 43 (2013): 5767–70.
  • R. Mohammadi, and M. Z. Kassaee, “Sulfochitosan Encapsulated Nano-Fe3O4 as an Efficient and Reusable Magnetic Catalyst for Green Synthesis of 2-Amino-4H-Chromen-4-Yl Phosphonates,” Journal of Molecular Catalysis A: Chemical 380 (2013): 152–8.
  • J. Safari, Z. Zarnegar, M. Sadeghi, and F. Azizi, “Chitosan-SO3H: An Efficient and Biodegradable Catalyst for the Green Syntheses of 1,4-Dihydropyridines,” Current Organic Chemistry 20, no. 27 (2016): 2926–32.
  • A. Dhakshinamoorthy, and H. Garcia, “Metal-Organic Frameworks as Solid Catalysts for the Synthesis of Nitrogen-Containing Heterocycles,” Chemical Society Reviews 43, no. 16 (2014): 5750–65.
  • A. Dhakshinamoorthy, M. Opanasenko, J. Čejka, and H. Garcia, “Metal Organic Frameworks as Solid Catalysts in Condensation Reactions of Carbonyl Groups,” Advanced Synthesis and Catalysis 355, no. 2–3 (2013): 247–68.
  • D. Kühbeck, G. Saidulu, K. R. Reddy, and D. D. Díaz, “Critical Assessment of the Efficiency of Chitosan Biohydrogel Beads as Recyclable and Heterogeneous Organocatalyst for C–C Bond Formation,” Green Chemistry 14, no. 2 (2012): 378–92.
  • M. Opanasenko, A. Dhakshinamoorthy, M. Shamzhy, P. Nachtigall, M. Horáček, H. Garcia, and J. Čejka, “Comparison of the Catalytic Activity of MOFs and Zeolites in Knoevenagel Condensation,” Catalysis Science and Technology 3, no. 2 (2013): 500–7.
  • X. C. Yi, F. G. Xi, Y. Qi, and E. Q. Gao, “Synthesis and Click Modification of an Azido-Functionalized Zr(Iv) Metal-Organic Framework and a Catalytic Study,” RSC Advances 5, no. 2 (2015): 893–900.
  • A. Schejn, T. Mazet, V. Falk, L. Balan, L. Aranda, G. Medjahdi, and R. Schneider, “Fe3O4@ZIF-8: Magnetically Recoverable Catalysts by Loading Fe3O4 Nanoparticles inside a Zinc Imidazolate Framework,” Dalton Transactions (Cambridge, England: 2003) 44, no. 22 (2015): 10136–40.
  • K. Khan, and Z. N. Siddiqui, “An Efficient Synthesis of Tri- and Tetrasubstituted Imidazoles from Benzils Using Functionalized Chitosan as Biodegradable Solid Acid Catalyst,” Industrial & Engineering Chemistry Research 54, no. 26 (2015): 6611–8.
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, G Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. J. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. Fox, J. D. 0109, Revision D. 01 (Wallingford, CT: Gaussian Inc., 2009).
  • R. Dennington, T. Keith, and J. Millam, GaussView, Version 5 (Shawnee Mission, KS: Semichem Inc., 2009).
  • N. M. O'Boyle, A. L. Tenderholt, and K. M. Langner, “Cclib: A Library for Package-Independent Computational Chemistry Algorithms,” Journal of Computational Chemistry 29, no. 5 (2008): 839–45.
  • G. A. Zhurko, and D. A. Zhurko, “ChemCraft-Graphical Program for Visualization of Quantum Chemistry Computations,” Chemcraft 1 (2020): 8.
  • M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, and G. R. Hutchison, “Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform,” Journal of Cheminformatics 4, no. 1 (2012): 17.
  • A. E. Reed, L. A. Curtiss, and F. Weinhold, “Intermolecular Interactions from a Natural Bond Orbital, Donor—Acceptor Viewpoint,” Chemical Reviews 88, no. 6 (1988): 899–926.
  • E. K. U. Gross, and W. Kohn, “Time-Dependent Density-Functional Theory,” Advances in Quantum Chemistry 21 (1990): 255–91.
  • K. Burke, J. Werschnik, and E. K. U. Gross, “Time-Dependent Density Functional Theory: Past, Present, and Future,” The Journal of Chemical Physics 123, no. 6 (2005): 62206.
  • R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke, “Electronegativity: The Density Functional Viewpoint,” The Journal of Chemical Physics 68, no. 8 (1978): 3801–7.
  • K. Fukui, “Role of Frontier Orbitals in Chemical Reactions,” Science (New York, N.Y.) 218, no. 4574 (1982): 747–54.
  • A. Lesar, and I. Milošev, “Density Functional Study of the Corrosion Inhibition Properties of 1,2,4-Triazole and Its Amino Derivatives,” Chemical Physics Letters 483, no. 4–6 (2009): 198–203.
  • R. G. Parr, L. V. Szentpály, and S. Liu, “Electrophilicity Index,” Journal of the American Chemical Society 121, no. 9 (1999): 1922–4.
  • R. Parthasarathi, J. Padmanabhan, M. Elango, V. Subramanian, and P. K. Chattaraj, “Intermolecular Reactivity through the Generalized Philicity Concept,” Chemical Physics Letters 394, no. 4-6 (2004): 225–30.
  • P. Politzer and D. G. Truhlar, Introduction: The Role of the Electrostatic Potential in Chemistry, in Chemical Applications of Atomic and Molecular Electrostatic Potentials, edited by P. Politzer and D. G. Truhlar (New York, NY: Plenum Press, 1981), 1–6.
  • R. G. Parr, and R. G. Pearson, “Absolute Hardness: Companion Parameter to Absolute Electronegativity,” Journal of the American Chemical Society 105, no. 26 (1983): 7512–6.
  • N. R. Sheela, S. Muthu, and S. Sampathkrishnan, “Molecular Orbital Studies (Hardness, Chemical Potential and Electrophilicity), Vibrational Investigation and Theoretical NBO Analysis of 4-4′-(1H-1,2,4-Triazol-1-Yl Methylene) Dibenzonitrile Based on Abinitio and DFT Methods,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 120 (2014): 237–51.
  • D. R. Roy, U. Sarkar, P. K. Chattaraj, A. Mitra, J. Padmanabhan, R. Parthasarathi, V. Subramanian, S. Van Damme, and P. Bultinck, “Analyzing Toxicity through Electrophilicity,” Molecular Diversity 10, no. 2 (2006): 119–31.
  • T. Koopmans, “Über Die Zuordnung Von Wellenfunktionen Und Eigenwerten Zu Den Einzelnen Elektronen Eines Atoms,” Physica 1, no. 1-6 (1934): 104–13.
  • A. E. Reed, F. Weinhold, R. Weiss, and J. Macheleid, “Nature of the Contact Ion Pair Trichloromethyl-Chloride (CCl3+Cl-). A Theoretical Study,” The Journal of Physical Chemistry 89, no. 12 (1985): 2688–94.
  • E. D. Glendening, C. R. Landis, and F. Weinhold, “Natual Bond Orbital Methods,” WIREs Computational Molecular Science 2, no. 1 (2012): 1–42.
  • M. Khalid, M. Ali, M. Aslam, S. H. Sumrra, M. U. Khan, N. Raza, N. Kumar, and M. Imran, “Frontier Molecular, Natural Bond Orbital, Uv-Vis Spectral Study, Solvent Influence on Geometric Parameters, Vibrational Frequencies and Solvation Energies of 8-Hydroxyquinoline,” International Journal of Pharmaceutical Sciences and Research 8, no. 2 (2017): 457–69.
  • S. Muthu, and G. Ramachandran, “Spectroscopic Studies (FTIR, FT-Raman and UV-Visible), Normal Coordinate Analysis, NBO Analysis, First Order Hyper Polarizability, HOMO and LUMO Analysis of (1R)-N-(Prop-2-Yn-1-Yl)-2,3-Dihydro-1H-Inden-1-Amine Molecule by Ab Initio HF and Density Functional Methods,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 121 (2014): 394–403.
  • D. Lin-vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli,The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Boston, MA: Akademic Press, 1991).
  • D. Sathiyanarayanan, Vibrational Spectroscopy Theory and Application (New Delhi: New Age International Publishers, 2004).
  • R. Rittner, L. C. Ducati, C. F. Tormena, B. C. Fiorin, and C. B. Braga, “Conformational Preferences for Some 5-Substituted 2-Acetylthiophenes through Infrared Spectroscopy and Theoretical Calculations,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 79, no. 5 (2011): 1071–6.
  • M. N. Arshad, A. S. Birinji, M. Khalid, A. M. Asiri, K. A. Al-Amry, F. M. S. Aqlan, and A. A. C. Braga, “Synthesis, Spectroscopic, Single Crystal Diffraction and Potential Nonlinear Optical Properties of Novel Pyrazoline Derivatives: Interplay of Experimental and Computational Analyses,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 202 (2018): 146–58.
  • A. E. Reed, R. B. Weinstock, and F. Weinhold, “Natural Population Analysis,” The Journal of Chemical Physics 83, no. 2 (1985): 735–46.
  • M. N. Tahir, S. H. Mirza, M. Khalid, A. Ali, M. U. Khan, and A. A. C. Braga, “Synthesis, Single Crystal Analysis and DFT Based Computational Studies of 2,4-Diamino-5-(4-Chlorophenyl)-6-Ethylpyrim Idin-1-Ium 3,4,5-Trihydroxybenzoate -Methanol (DETM),” Journal of Molecular Structure 1180 (2019): 119–26.
  • M. U. Khan, J. Iqbal, M. Khalid, R. Hussain, A. A. C. Braga, M. Hussain, and S. Muhammad, “Designing Triazatruxene-Based Donor Materials with Promising Photovoltaic Parameters for Organic Solar Cells,” RSC Advances 9, no. 45 (2019): 26402–18.
  • M. Khalid, M. A. Ullah, M. Adeel, M. Usman Khan, M. N. Tahir, and A. A. C. Braga, “Synthesis, Crystal Structure Analysis, Spectral IR, UV–Vis, NMR Assessments, Electronic and Nonlinear Optical Properties of Potent Quinoline Based Derivatives: Interplay of Experimental and DFT Study,” Journal of Saudi Chemical Society 23, no. 5 (2019): 546–60.
  • M. S. Ahmad, M. Khalid, M. A. Shaheen, M. N. Tahir, M. U. Khan, A. A. C. Braga, and H. A. Shad, “Synthesis and XRD, FT-IR Vibrational, UV–Vis, and Nonlinear Optical Exploration of Novel Tetra Substituted Imidazole Derivatives: A Synergistic Experimental-Computational Analysis,” Journal of Physics and Chemistry of Solids 115 (2018): 265–76.
  • J. X. Mu, Y. X. Shi, H. K. Wu, Z. H. Sun, M. Y. Yang, X. H. Liu, and B. J. Li, “Microwave Assisted Synthesis, Antifungal Activity, DFT and SAR Study of 1,2,4-Triazolo[4,3-a]Pyridine Derivatives Containing Hydrazone Moieties,” Chemistry Central Journal 10, no. 50 (2016): 50–9.
  • A. Ali, M. Khalid, M. F. Rehman, S. Haq, A. Ali, M. N. Tahir, M. Ashfaq, F. Rasool, and A. A. C. Braga, “Efficient Synthesis, SC-XRD, and Theoretical Studies of O-Benzenesulfonylated Pyrimidines: Role of Noncovalent Interaction Influence in Their Supramolecular Network,” ACS Omega 5, no. 25 (2020): 15115–28.
  • M. Khalid, A. Ali, R. Jawaria, M. A. Asghar, S. Asim, M. U. Khan, R. Hussain, M. F. Rehman, C. J. Ennis, and M. S. Akram, “First Principles Study of Electronic and Nonlinear Optical Properties of A-D-π-a and D-A-D-π-a Configured Compounds Containing Novel Quinoline-Carbazole Derivatives,” RSC Advances 10, no. 37 (2020): 22273–83.
  • J. Zyss, and J. F. Nicoud, “Status and Perspectives for Molecular Nonlinear Optics: From Crystals to Polymers and Fundamentals to Applications,” Current Opinion in Solid State and Materials Science 1, no. 4 (1996): 533–46.
  • V. Balachandran, A. Lakshmi, and A. Janaki, “Vibrational Spectroscopic Studies and Natural Bond Orbital Analysis of 4,6-Dichloro-2-(Methylthio) Pyrimidine Based on Density Functional Theory,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 81, no. 1 (2011): 1–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.